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1. METRIC STATEMENT FOR COMPUTATIONAL EFFECTIVENESS 

1.1 GPRA-PMM METRICS 

ASCR’s GPRA-PMM Software Metric for Computational Effectiveness is designed to comply with 

Public Authorizations PL 95-91, “Department of Energy Organization Act,” and PL 103-62, 

“Government Performance and Results Act.” 

The U.S. Office of Management and Budget (OMB)* oversees the preparation and administration of 

the President’s budget; evaluates the effectiveness of agency programs, policies, and procedures; assesses 

competing funding demands across agencies; and sets the funding priorities for the federal government. 

The OMB has the power of audit and exercises this right annually for each federal agency. According to 

the Government Performance and Results Act of 1993 (GPRA), federal agencies are required to develop 

three planning and performance documents: 

1. Strategic Plan: a broad, 3 year outlook; 

2. Annual Performance Plan: a focused, 1 year outlook of annual goals and objectives that is 

reflected in the annual budget request (What results can the agency deliver as part of its public 

funding?); and 

3. Performance and Accountability Report: an annual report that details the previous fiscal year 

performance (What results did the agency produce in return for its public funding?). 

OMB uses its Performance Assessment Rating Tool (PART) to perform evaluations. PART has seven 

worksheets for seven types of agency functions. The function of Research and Development (R&D) 

programs is included. R&D programs are assessed on the following criteria: 

• Does the R&D program perform a clear role? 

• Has the program set valid long term and annual goals? 

• Is the program well managed? 

• Is the program achieving the results set forth in its GPRA documents? 

In Fiscal Year (FY) 2003, the Department of Energy Office of Science (DOE SC-1) worked directly 

with OMB to come to a consensus on an appropriate set of performance measures consistent with PART 

requirements. The scientific performance expectations of these requirements reach the scope of work 

conducted at the DOE national laboratories. The Joule system emerged from this interaction. In FY09 

Joule was renamed PMM. PMM, or GPRA-PMM herein, enables the chief financial officer and senior 

DOE management to track annual performance on a quarterly basis. GPRA-PMM scores are reported as 

“success, goal met” (green light in PART), “mixed results, goal partially met” (yellow light in PART), 

and “unsatisfactory, goal not met” (red light in PART). GPRA-PMM links the DOE strategic plan† to the 

underlying base program targets. 

1.2 FY10 GPRA-PMM GOALS FOR THE DOE ASCR PROGRAM 

The DOE Advanced Scientific Computing Research (ASCR)‡ program has the following two annual 

performance measures as part of its PART requirements: 

1. SC GG 3.1/2.5.1—Focus usage of the primary supercomputer at the National Energy Research 

Scientific Computing Center (NERSC) on capability computing, defined as the percentage of the 

computing time used by computations that require at least 1/8 of the total resource. FY10 

performance metric: capability usage is at least 40%. 

                                                
* http://www.whitehouse.gov/omb 

† http://www.er.doe.gov/about/MissionStrategic.htm 

‡ http://www.sc.doe.gov/ascr/About/about.html 
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2. SC GG 3.1/2.5.2—Improve computational science capabilities, defined as the average annual 

percentage increase in the computational effectiveness (either by simulating the same problem in 

less time or simulating a larger problem in the same time) of a subset of application codes. FY10 

performance metric: efficiency measure is ≥100%. 

Ensuring compliance with these metrics, which are tracked on a quarterly basis, is an important 

milestone each fiscal year for the DOE ASCR Program Office as well as for the success of the overall 

DOE SC-1 open science computing effort. This document details the results of the effectiveness of the 

computational science capability (SC GG 3.1/2.5.2). 

1.3 QUARTERLY TASKS RELATED TO SC GG 3.1/2.5.2 

The GPRA-PMM effort to improve computational science capabilities is a yearlong effort requiring 

quarterly updates. The quarterly sequence of tasks for exercising this software metric is as follows. 

Quarter One (Q1) Tasks (deadline: December 31). Identify a subset of candidate applications 

(scientific software tools) to be investigated on DOE SC supercomputers. Management (at DOE SC and 

national laboratories) decides upon a short list of applications and computing platforms to be exercised. 

The Advanced Scientific Computing Advisory Committee (ASCAC) approves or rejects the list. The Q1 

milestone is satisfied when a short list of target applications and machines (supercomputers) is approved. 

Quarter Two (Q2) Tasks (deadline: March 31). Problems that each chosen application must 

simulate on the target machines are determined. The science capability (simulation result) and 

computational performance of the implementation are benchmarked and baselined (recorded) on the 

target machines for the defined problems and problem instances. The Q2 milestone is satisfied when 

benchmark data—namely the machine operation count, execution time, and machine instance—is 

collected and explained. If an application is striving to achieve a new science result in addition to 

demonstrating improved performance, then providing a detailed discussion of its current (prior to Q2) 

capability, a discussion of why the capability is insufficient, and a description of why the new capability 

being developed satisfy the Q2 milestone. 

Quarter Three (Q3) Tasks (deadline: June 30). The application software (its models, algorithms, 

and implementation) is enhanced for efficiency, scalability, science capability, etc. The Q3 milestone is 

satisfied when the status of each application is reported at the Q3 deadline. Corrections to Q2 problem 

statements are normally submitted at this time. 

Quarter Four (Q4) Tasks (deadline: September 30). Enhancements to the application software 

continue as in Q3. The enhancements are stated and demonstrated on the machines used to generate the 

Q2 baseline information. A comparative analysis of the Q2 and Q4 data is summarized and reported. The 

Q4 milestone is satisfied if the enhancements made to the application software are in accordance with the 

efficiency measure as defined in Q2 (run-time efficiency, scalability, or new result). 
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2. METRIC RESULTS FOR COMPUTATIONAL EFFECTIVENESS 
 

 

Each application is discussed and its baseline and metric problem described in the respective 

application sections. A brief description of the machine used for the application problems is given. A 

summary of measured results for each application is provided. 

2.1 TARGET HPC SYSTEM: JAGUARPF.CCS.ORNL.GOV 

The Cray XT5 high-performance computing (HPC) leadership system, Jaguar/XT5, at the Oak Ridge 

National Laboratory (ORNL) Leadership Computing Facility (OLCF) is used to exercise the DOE ASCR 

FY10 GPRA-PMM software metric. 

Jaguar/XT5 has a total of 18,688 XT5 compute nodes or 224,256 processing elements (PEs). These 

dual-socket compute nodes are six-core AMD Opteron™ “Istanbul” chips operating at 2.6 GHz with 16 

gigabytes (GB) of unbuffered memory per node, 6 megabytes (MB) of shared, 48-way associative L3 

cache per chip, 512 kilobytes (KB) of 16-way associative L2 cache per core, and 64 KB instruction and 

64 KB data two-way associative L1 caches per core. Each socket employs double data-rate two (DDR2) 

dual inline memory modules (DIMMs) at 800 MHz with, in the best case, 25.6 GB/s of local memory 

bandwidth per node. 

Installed on the compute nodes is the Cray Linux Environment (CLE) version 2.2.  CLE is a 

lightweight operating system (OS) designed to minimize the layers of OS between the application and the 

hardware.  CLE supports many parallel programming models, including MPI 2.0 and OpenMP, the two 

models used by the applications in this report.  Application developers have access to a variety of 

compilers and libraries, including five different C, C++, and Fortran programming environments (Cray, 

GNU, Intel, Pathscale, and PGI); highly optimized computing libraries, such as BLAS, LAPACK, and the 

Cray Scientific Libraries; and internal instrumentation libraries, such as PAPI, which was used to collect 

the machine event data for the metrics described in this report.  A complete list of the software, which is 

accessible to users in the form of modules, is reproduced in the Appendix. 

Jaguar/XT5 has 192 input/output (I/O) and login/service nodes. Each of these nodes consists of a 

2.6 GHz dual-core AMD Opteron™ chip with 8 GB of memory per node. The I/O and service nodes are 

running a variant of SuSE Linux. Approximately 10 petabytes (PB) of disk space are available in the 

scratch file systems that support massive I/O parallelism through the Lustre file system software.* 

HyperTransport links all nodes to Cray’s proprietary SeaStar2+chips, which are used to construct a three-

dimensional torus communication network between nodes. There are six switch ports per Cray SeaStar2+ 

chip, and each port has a bandwidth of 9.6 GB/s. The best-case bandwidth between the compute node and 

the SeaStar2+ interconnect chip is 6.4 GB/s. Thus, the injection bandwidth is half this, or 3.2 GB/s. 

For further information, the NCCS website† describes the system and its software stack and is 

sufficiently detailed for the purposes of this report. For information on the Cray XT5 platform, see the 

Cray website.‡ For more information on the AMD Istanbul chip set, see the presentation by Brian 

Waldecker at the NCCS website.§ 

2.2 RESULTS SUMMARY 

The FY10 studies aim to demonstrate strong scaling, where the problem complexity for an 

application is fixed and the time to execute the instance is reduced by demonstrating effective utilization 

                                                
* http://www.lustre.org 

† http://www.nccs.gov/computing-resources/jaguar/ 

‡ http://www.cray.com/Assets/PDF/products/xt/CrayXT5Brochure.pdf 

§ http://www.nccs.gov/wp-content/uploads/2009/06/CrayORNL_120709.pdf 
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of an increased hardware allocation, or weak scaling, where the goal is to compute in the same wall-clock 

time a more complex problem on an increased hardware allocation (i.e., maintaining fixed work per 

processing element). In lieu of or in addition to these modes of enhancement, the process of computing a 

particular algorithm may be enhanced for efficiency, where the time to execute a fixed problem is reduced 

on a fixed hardware allocation. Application developers often develop an efficiency metric that is relevant 

to their problem to report enhancements –such as the rate of computing math operations on floating point 

numbers or the rate an external device such as the file system can be effectively utilized. 

The program binary (a compiled/loaded executable constructed from the application source code) is 

the instantiation of the problem on the target machine, and the computational complexity of each problem 

instance is deduced directly by monitoring the values of the various program counters for the various 

functional units (e.g., floating point operations) activated during program execution. In other words, the 

required resources define the complexity of the problem and the work conducted to actually execute it. 

This measure of work is fairly basic from the hardware perspective and can be derived from system 

observables such as the number of processing elements (PEs) dedicated to executing the program, 

execution time, total number of instructions executed, the magnitude of the memory demand, etc. 

In the following sections, each of the FY10 applications (TD-SLDA, POP, LS3DF, and Denovo) is 

introduced, and their computational effectiveness metric problem results and conclusions are summarized.  

A more detailed examination of each application can be seen in Section 3. 

2.2.1 TD-SLDA 

The time-dependent superfluid local density approximation (TD-SLDA) is the time dependent 

extension of the density functional theory (DFT) for superfluid systems. TD-SLDA can be applied to 

study a host of fundamental problems in the physics of fermionic superfluids: i) dynamics of nuclear large 

amplitude collective motion (including induced fission); ii) the dynamics of vortices in the neutron star 

crust and the elucidation of the starquake mechanism; iii) the generation and dynamics of vortices and the 

study of the quantum turbulence in fermionic superfluids; and iv) the study of dynamics of cold gases in 

various external conditions (static and time-dependent magnetic fields/Feshbach resonance, static and 

time-dependent optical lattices, reactions to various laser fields, etc.). Due to the very large number of 

coupled nonlinear partial differential equations, the equations in 3D can be solved (SLDA) and evolved 

(TD-SLDA) only on leadership computing resources. 

Both the unitary Fermi gas and nuclear software capabilities were benchmarked in Q2 (see the SLDA 

section on Q2 benchmarks for details). While both sets of codes were under continual development this 

year, the nuclear solver and time evolution codes became the focus of our Q3 and Q4 enhancement efforts 

as we deemed the unitary codes to be in good shape for production. The goal of the nuclear software is to 

be capable of modeling systems in spatial domains from 40
3
-75

3
 fm

3 
and for times up to almost an 

attosecond. The total number of nucleons can reach thousands in some systems of interest.  

In Q2, the capability to pass solutions computed by the nuclear solver software to the time dependent 

software was tested for the nucleus 198W on a 40^3 spatial lattice with 0.75fm lattice constant within a 

100MeV energy cutoff. The solver executed on 73,728 PEs, and converged and wrote 16,412 (~64GB) 

quasi-particle wave functions to represent the ground state of the system after 6538.524s. The time 

dependent nuclear code executed on 16,414 PEs, read and distributed the static solutions and observables, 

executed 200 successful time steps, and exited after 2084.424s. 

The Q4 problem was considerably more complex than the Q2 problem. Ground state solutions to 

238U on a 40x40x64 spatial lattice with 1.25fm lattice constant and within the same 100MeV cutoff were 

constructed. The Q4 solver utilized 217,800 PEs, and converged and wrote 136,626 quasi particle wave 

functions (~834GB) after 18393.181s.  The Q4 time dependent code executed on 136,628 PEs, read and 

distributed the solution data, evolved the system 200 time steps, and exited after 2031.541s. 

For the solver and time dependent codes, both the number of mathematical operations on floating 

point numbers and the rate of executing writes and reads on a file in the Lustre file system are critical 

factors to the performance of the SLDA codes. In the Q2 solver, 5.358236026051104e+16 FP_OPs were 
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executed at the rate 111,150,055 FP / s / PE. In the Q4 solver, 9.416633279080292e+17 FP_OPs were 

executed at the rate 235,078,792 FP / s / PE. The enhanced code executed 17.575 times more floating 

point operations than the original solver and achieved 211.4967% of the weak scaling efficiency for 

floating point operations relative to the Q2 problem. In Q2, 64GB of solution data was constructed and 

the rate of conducting the assembly and writes of solution data was measured as 47.2013 MBps. In Q4 

834GB of solution data was constructed and the rate that the new assembly and write routine achieved 

was rate 3482.5963 MBps. Thus, the Q4 solver constructed over 13 times as much solution data and the 

new I/O routine is nearly 75 times faster than the Q2 I/O algorithm for the problems tested. In a nutshell, 

the enhanced time dependent code read and distributed over 13 times more solution data, executed on just 

over 8 times the number of processes, computed nearly 12 times more floating point operations, evolved 

the same number of time steps as the Q2 code -all in slightly less time! While the rate of executing 

floating point operations remained essentially constant between Q2 and Q4, the rate of conducting I/O 

and distribution of solutions was over 41 times faster in Q4. We report a hyper-weak result for the time 

dependent code based on the ratio T(Q4) / T(Q2) := 1.026. The Q2 the solver utilized 32.87% of the 

entire machine, whereas in Q4 we exercised 97.12% of the total system. The Q2 time dependent code 

executed on ~ 7.32% of the entire system, whereas the Q4 time dependent code executed on ~ 61% of the 

system. 

There were several major chancges to the SLDA software. The solver was modified to form the entire 

BdG matrix prior to diagonalization (rather than in staged diagonalizations) and was redesigned to utilize 

a parallel write over the Lustre file system that imposes a transformation of the decomposed solutions to 

their reference global indexing scheme as required by the time dependent code. The enhanced time 

dependent code was modified to correct the lack of particle conservation. It was determined that all terms 

in the functional that contained an odd power of the gradient needed to be symmetrized on the lattice 

basis. While this step significantly increased the amount of mathematical operations on each wave 

function each time step, it improved the quality of the results restoring numerical conservation between 

the solver and time dependent codes as well as between time steps. To help counteract the increased 

number of operations per wave function, coefficients to derivatives within each time step per wave 

function were stored instead of being recomputed in Q4 where this was possible. The I/O routines were 

rewritten to perform optimized parallel reads and writes to files in the Lustre file system.  Although not 

compared as part of the metric, a parallel check-point and restart capability was completed and tested in 

the Q4 nuclear code enabling unprecedented studies of long physical durations 

2.2.2 POP 

The Parallel Ocean Program (POP) [1]  is an ocean general circulation model used for ocean and 

climate studies, available both as a standalone code and as the ocean component of the Community 

Climate System Model (CCSM).  POP remains one of the primary ocean models in use for global climate 

and ocean research.  The POP model is used for both climate change and oceanographic research.  For 

climate change research, POP is coupled to atmosphere, land, and sea-ice models and run at a relatively 

coarse resolution to achieve maximum simulation throughput over centuries of simulation time.  In 

oceanographic research, however, POP is run at a scale that is fine enough to resolve the mesoscale 

eddies that influence global ocean circulation over the course of simulated decades. Leadership 

computational capabilities have now reached a point where it is feasible to run the coupled climate model 

at a much finer scale.  Using the mesoscale resolution of the POP ocean model coupled with more 

physically realistic models for the remaining components of the Earth system is expected to improve the 

climate simulations and provide more accurate projections of future climate change. 

The community goal is to achieve a throughput of more than one simulated year per CPU-day for the 

fully coupled system.  There are several factors to consider when designing improvements to POP’s 

performance and scalability.  The ocean model is but one component of the system, so careful attention to 

memory allocation is required.  In addition, output for the climate-coupled model will be larger and occur 

more frequently than it does in the ocean-only model. 
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For both the Q2 and Q4 problems, we performed a computation using the ocean-only mode that is 

effectively identical to the expected requirements for the coupled simulation.  The model used a tripole 

0.1-degree global grid (3600×2400×42 grid points) and computed three simulated days with a timestep of 

ten minutes.  To benchmark the high-frequency output time slice, the simulation will output data 

comparable to the data needed for the climate-coupled model after each simulated day.  This is an order-

of-magnitude increase in IO activity; for ocean-only models, data is output once every simulation-month.  

Thus, the enhancement aimed to improve the strong scaling capability of POP. The Q2 problem was 

executed on 4800, 9600, and 14,400 PEs of the Jaguar XT5 system in Q2. The horizontal subdomain 

block sizes used in Q2 were 30×60, 30×30, and 30×20, respectively. The Q2 runtimes were ~ 958s for 

4800 PEs, ~ 1012s for 9600 PEs, and ~1450s for 14400 PEs. The Q2 I/O implementation was inadequate 

for this frequency of output, thus improving the I/O system became the primary focus of this code’s 

GPRA-PMM activities. Based on the small amount of work computed locally for the 14400 PE case on 

the Q2 problem, we decided to focus on a strong scaling result between the 4800 PE and 9600 PE cases.  

On careful analysis, it was determined that the I/O phases of the code might be re-written to achieve a 

significant performance gain in efficiency. Thus in Q4 we first aimed to enhance the efficiency of the Q2 

problem on 4800 PEs where 652.933508s of the total run time of 957.842493s, or 68.1671% of the 

walltime, was spent doing I/O. The simulation executed 3 simulated days. Each day observable data and 

movie related data were written to disk. The observables were formed in 8 3D fields and 19 2D fields. 

Each process managed a 60 × 30 × 42 fragment per 3D field and a 60 × 30 fragment per 2D field. The 

data type for all the I/O data is float. Thus, the volume of observable data written per day for the target 

problem is (8 × 4 × 30 × 60 × 42 × 4800 + 19 × 4 × 30 × 60 × 4800) B / day = 11.4262104 GB / day, or 

about 35 GB for the Q2 problem and 1 file for observables per day. There are 60 movies formed each day 

from coordinate data. The 3600 × 2400 coordinate movie data is decomposed over a virtual 60 × 80 

rectangular process grid (for 4800 PEs) where each process owns a 60 × 30 block of the global data set. 

The total volume of data written for movies in the Q2 problem is 60 × 4 × 60 × 30 × 4800 B / day = 

1.931190491 GB / day or 5.793571472 GB for the entire benchmark problem.  

In Q4, we introduced a C routine that targets a single Lustre file for a parallel write. Instead of a 

single process writing after each gather, the Q4 code executes a targeted gather phase where first the data 

affiliated with each k-value and field are used to identify the process ID of the gathering process. After 

gathering the data to be written into a set of designated, disjoint I/O processes, then each I/O process 

executes a write with offset into the Lustre file. For the 2D fields, a single I/O PE was assigned for each 

2D field. The gather and write proceed as just described in the case of 3D fields. We note that for the 

combined assembly and write of the 3D and 2D observable data, the Q4 algorithm is 7.595252132037274 

times faster than the Q2 version for the fixed Q2 problem on 4800 PEs. Similarly, for the movie files, a 

group of designated I/O processes replace the single process write –in this case a single I/O process 

assumes management of a single movie. A gather phase is executed where the block decomposed data is 

sent to the process with MPI process ID equal to the movie index. The I/O processes then locally copy the 

data from the receive buffer into a write buffer thus restoring the global indices –transforming to a 

column major ordering of the coordinates in the 3600 x 2400 spatial grid. The set of I/O processes then 

write with offset to a single Lustre file. Looking at the performance numbers between Q2 and Q4, we note 

that the Q4 code is 7.946443175395545 times faster on the Q2 problem and 4800 PEs.  

The strong scaling assertion is all but complete. We use the new I/O algorithm and execute the Q2 

problem on 9600 PEs in ~290s, two times the PEs in the Q2 4800 PE baseline problem and ~3.3 times 

faster than the Q2 run time on 4800 PEs. 

 

2.2.3 LS3DF 

LS3DF [2, 3] is a code for ab initio density functional theory (DFT) calculations.  It was designed for 

the study of nanosystems containing a few thousand to hundreds of thousands of atoms.  LS3DF scales 

linearly with both the number of atoms in the system being studied and the number of processors used in 
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the computation of a given system.  It achieves this scalability by using a divide-and-conquer method for 

solving the DFT equations.  The physical system is divided into many fragments, each of which is 

computed upon by a small group of processors before the results from these fragments are gathered 

together to generate the results.  It is this independent solution of different fragments that makes this 

algorithm so amenable to parallelization.  Because the algorithm inside LS3DF is so naturally 

parallelizable, the code is already capable of performing DFT calculations on systems with hundreds of 

thousands of atoms.  It can finish a self-consistent calculation across hundreds of thousands of processors 

within an hour. 

The development of LS3DF has made the study of the internal electric field problem in nanosystems 

computationally feasible.  Electric fields could occur within nanocrystals due to dipole moments.  These 

internal electric fields can exert significant influence over the electronic structure, the electron wave 

function localization, the exciton binding energy and dissociation, and the carrier dynamics of the system.  

The internal electric field problem is not yet well understood due to the onerous computational demands 

of the system, but with LS3DF this knowledge is now within reach. 

For the GPRA-PMM metric, we sought to improve the strong scaling capability of LS3DF.  To test 

its scalability, we chose a 2776 atom, 24,220 valence electron ZnO nanorod problem modeled with 

realistic surface passivation for the Q2 and Q4 benchmarks.  In this problem, we perform self-consistent 

calculations to compute the total charge density and potential energy of the system.  Q2 results showed 

poor strong scaling due to inefficiencies in the subroutine that dominates the computations.  It is this 

subroutine that was the focus of LS3DF’s GPRA-PMM efforts. 

We made three major developments in the code: (1) a band-index parallelization within the main 

subroutine; (2) a new algorithm for wave function optimization; and (3) an improved load balancing 

algorithm. 

For Q4, the same problem was run again, and the performance markedly improved.  We successfully 

reduced the computational time from the original 3.87 hours on 43,200 processors to 1.48 hours on 

86,400 processors, a factor of 2.6 speed-up in wall time. 

2.2.4 Denovo 

 Denovo [4, 5] serves as a general radiation transport application for nuclear and radiological sciences 

by finding accurate numerical solutions to the linear Boltzmann equation as described in Section 3.3.7. 

This application area includes, but is not limited to, nuclear reactor analysis, fusion, radiation shielding 

and protection, nuclear safeguards, radiation detection, and radiation therapy, diagnostics, and treatment 

planning. Nuclear reactor analysis requires accurate characterization of the neutron distribution in the 

reactor in order to determine power, safety, and fuel and component performance. In a steady-state 

operational reactor, the neutron field is characterized by six independent variables (three in space, two in 

angle, and one in energy), and the mean flight times of low-energy neutrons are in the millimeter to 

centimeter range. Thus, high-resolution solutions of the transport equation require tremendous 

computational resources. Traditionally, computational resources have not been sufficient to attack this 

problem at full resolution; so multi-level approximation schemes have been employed. However, current 

leadership systems such as Jaguar/XT5 open the door, for the first time ever, to attacking this problem 

from a full transport approach. To achieve this goal, Denovo has synthesized the last decade’s worth of 

computational transport work into a modern, production-quality application that has the ability to support 

a full-core reactor analysis from an ab initio approach. Further details on the Denovo physical models, 

numerical algorithms, and software implementation are given in Section 3.3.7. 

For both the Q2 baseline and Q4 metric problems, the power distribution in a full EDF PWR900 

model core [6] is computed. The core (height 4.2 m) has 17×17 (289) assemblies (height 3.6 m), of which 

157 are fuel and 132 are reflector, with each fuel assembly consisting of 17×17 fuel pins. Three different 

fuel enrichments (ranging from 1.5% to 3.25%) are modeled in the fuel assemblies, with the 289 fuel pins 

being “homogenized” with 45 “pin cells”. A total of 135 different pin cell materials are used to 
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accommodate the three different enrichments. With this configuration, the Denovo application is used to 

solve for the k-eigenvalue and scalar flux throughout the core (see Equation 2 in Section 3.4). 

For the Q2 baseline problem, a 2×2 spatial mesh array is used for each pin cell, yielding 578 mesh 

cells in the x and y directions (0.63 cm width) and 700 cells in the axial (z) direction (0.60 cm width), for 

a total of 233,858,800 cells. Denovo is asked to return solutions to a discretized Boltzmann equation 

consisting of one scalar unknown per cell, 168 angular directions per scalar unknown, and two energy 

groups (fast and thermal) per scalar unknown, for a total of 7.86×10
10

 unknowns (degrees of freedom). 

Solutions were obtained on 17,424 cores of Jaguar/XT5 using a keff tolerance of 0.001 and an eigenvector 

tolerance of 0.10. A total simulation time of 187.68 min (11,260.8 s) is required, with over 99% of the 

time being consumed by the sweep algorithm. 

During the GPRA-PMM exercise, parts of the code were optimized, a new parallel decomposition 

was implemented, and several new solvers were added to the code, allowing Denovo to scale to hundreds 

of thousands of cores.  Solving the Q2 problem on the same number of processors, but using improved 

KBA sweep ordering and block-size analysis, and a residual Krylov solver for within-group solves, the 

problem was solved in 11 minutes, a factor of 17 improvement. 

An additional Q4 metric problem was also solved: rather than two energy groups, this problem 

incorporated 22 times more degrees of freedom, for a total of 44 energy groups and 1.73×10
12

 unknowns.  

This problem, which was infeasible before the improvements made during the GPRA-PMM exercise, was 

solved on 112,200 cores of Jaguar in just over twenty minutes in the best case. Denovo was exercised in a 

weak scaling manner – at a minimum, we sought to achieve a constant runtime for the same amount of 

work per core.  Despite increasing the size of the problem by a factor of 22 while increasing the number 

of processors by only a factor of 6.4, we still achieve a reduction in runtime, resulting in a factor of 31 

efficiency improvement in the best case. The Q2 the software utilized ~7.77% of the entire machine, 

whereas in Q4 we utilized 50.03% of the total system. 

2.3 CONCLUSIONS 

All four FY10 GPRA-PMM applications have successfully executed their Q2 baseline problems on 

the target Jaguar XT5 architecture, and achieved their stated performance goals in Q4. As dictated by 

their science drivers, two of the applications (POP and LS3DF) pursued strong scaling metric problems 

for Q4 and the other two (TD-SLDA and Denovo) accomplished weak scaling or efficiency results. Table 

1 below summarizes the baseline problems and FY10 findings for each applicatio
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Table 1. FY10 GPRA-PMM Summary of Enhancement Results for Q2, Q4 Benchmark Exercises 

Application TD-SLDA POP LS3DF Denovo 

Problem 

 

Q2 : Nuclear 198W study 

• Z=74, N=124  

• 40 x 40 x 40 lattice 

• 7,466 p-quasiparticle 

• 8,946 n-quasiparticle 

• 200 time steps 

• 0.75fm spacing 

• 100MeV cutoff 

 

Q4 : Nuclear 238U study 

• Z=92, N=146  

• 40 x 40 x 64 lattice 

• 67,118 p-quasiparticle 

• 69,508 n-quasiparticle 

• 200 time steps 

• 1.25fm spacing 

• 100MeV cutoff 

 

3 simulated days, 

ocean-only model 

• 0.1-degree tripole 

global grid 
(3600×2400) 

• 42 vertical levels  

• 10 minute time steps 

• High-frequency 
output time slice 

Self-consistent DFT 

calculation for ZnO 
nanorod 

• 2776 atoms 

• 24220 valence electrons, 

d-electrons in valence 
band 

• 720×300×300 numerical 

grid 

 

Q2 : Full Core EDF PWR900 

benchmark 

• 17x17 fuel assemblies 

• 17x17 fuel pins per 
assembly 

• 2x2 cells per pin cell 

• 3 fuel enrichments 

• 45 homogenized pin cell 
materials per assembly 

• 135 different pin cell 
materials 

• 233,858,800 

(578x578x700) cells 

• 168 angles, 1 moment, 2 

energy (fast and thermal) 
groups 

• 7.86×10
10

 total unknowns 

 

Q4 : Full Core EDF PWR900 

benchmark 

• 168 angles, 1 moment, 44 

energy (fast and thermal) 
groups 

• 1.73×10
12

 total unknowns 

Hardware (cores)     

Q2         (s)73,728; (td)16,414 

 

4,800 

 

43,200 

 

17,424 

 

Q4         (s)217,800; (td)136,628 9600 86,400 112,200 

Time (seconds)     

Q2 (s)6538.5, (td)2084.4 
957.8 

 

 

13,932 

 

 

11,260.8 

 

Q4 (s)18393.2, (td)2031.5 290.3 5328 1121.6 

Metric target 
(s)Q2:Q4 efficiency ≥ 1.0 ;  

(td)Q2:Q4 time ≥ 1.0 
Q2:Q4 time ≥ 2.0 Q2:Q4 time ≥ 2.0 Q2:Q4 efficiency ≥ 1.0 

Metric result 
(s)Q2:Q4 efficiency = 2.11 

(td)Q2:Q4 time =  1.026 
Q2:Q4 time = 3.2992 Q2:Q4 time = 2.6 Q2:Q4 efficiency = 31 
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3. OVERVIEW OF COMPUTATIONAL SCIENCE CAPABILITIES 

AND ANALYSIS OF METRIC RESULTS 
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3.1 TD_SLDA 

3.1.1 Introduction 

A large number of quantum many-body systems become superfluid when their temperature is 

sufficiently low. The best-known examples are the electrons in a superconductor and the liquid Helium 4, 

the first being an example of a fermion system and the second an example of a bosonic system. Many 

other systems also demonstrate superfluid properties: electrons in high Tc superconductors, excitons in 
condensed matter systems, neutrons in the crust of neutron stars, neutrons and protons in atomic nuclei, 

quarks in high density matter (expected to exist in the cores of neutron stars), liquid Helium 3, and both 

fermionic and bosonic cold atoms in atomic traps. The great importance of superfluidity was rewarded 
over the years with at least ten Nobel prizes – a record number for any topic in physics.  Superfluidity in 

some of these systems – bosonic superfluids (liquid Helium 4, cold bosonic atoms in traps, and excitons 

in condensed matter systems) – is related to the formation of a Bose-Einstein Condensate (BEC). In the 
fermionic superfluids (electrons, fermionic atoms in traps, nucleon and quarks) the nature of superfluidity 

is due to the formation of Cooper pairs of fermions and their subsequent formation of a BEC. In fermionic 

superfluids the critical temperatures for the onset of superfluidity span an astounding twenty orders of 

magnitude from quark matter to cold atomic gases. Despite these great differences in the values of their 
critical temperatures, these systems share a number of properties, so the methods used to study one 

system can be used to study the other systems.  

We have developed a set of codes that allows the study of the structure and in particular the dynamics 
of a large class of fermionic superfluids: neutron superfluid in neutron star crust, cold atoms in traps, 

nuclear reactions with gamma rays, incident nucleons and other projectiles as well as induced nuclear 

fission.  

The current level of understanding of the dynamics of the neutron star crust, in particular of the nature 
of the starquakes which lead observationally to the so-called glitches in the rotational spectra of pulsars, is 

low at best. With the Time-Dependent Superfluid Local Density Approximation (TD-SLDA) software, a 

systematic study of the dynamics of the vortex pinning and de-pinning dynamics, believed to be the 
source of the starquakes, is now possible. 

 While one cannot perform experiments on neutron stars, the physics governing the neutron superfluid 

in the neutron star crust shares many similarities with the physics of cold fermion atoms in traps, which 
today are extensively studied in many laboratories. One particular aspect of the cold-atom physics, the 

extreme tunability of the properties through the use of the so-called Feshbach resonance, is of great 

importance.  Another extremely important aspect of the cold atom physics is the fact that these systems 

have the highest critical temperature (in appropriate units) of any known superfluid. These systems are 
also exactly at the middle of the BCS-BEC crossover and for this reason they share many properties with 

both fermionic and bosonic superfluids. Perhaps as a result of the fact that these systems are characterized 

by such a critical temperature, they also demonstrate a property so observed only in high Tc 
superconductors, namely the phenomenon of pseudo-gap. The presence of the pseudo-gap has been 

established in first principle calculations and subsequently put in evidence in experiments as well.  

The theoretical time-dependent formalism used to describe the physics of nuclei and various nuclear 
reactions is similar to the formalism used to study the dynamics of neutron star crust, the main difference 

being the actual number of protons and neutrons and the size and geometry of the system. From the 

practical point of view, the study of various nuclear reactions and of induced nuclear fission are topics of 

great importance to energy production, homeland security and defense. 

3.1.2 Background and Motivation 

In condensed matter and chemistry calculations, the leading method is the Density Functional Theory 
(DFT). In the DFT method instead of solving the Schrödinger equation we solve an N-electron system 

requiring the solution of a partial differential equation in a 3N-dimensional space with a system of N 

nonlinear, coupled 3D-equations. This simplification is achieved by introducing an energy density 
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functional, the variation of which provides the energy and the electron density spatial distribution of the 

ground state of the system. The existence of the energy functional was proven by Kohn, Hohenberg and 
Sham in 1964-1965 and this achievement was recognized with the Nobel Prize in chemistry to W. Kohn 

in 1998. Further theoretical developments and the extension of the DFT formalism have led today to the 

study of the properties of a large number of excited states of electron systems within the framework of the 

TD-DFT (Time-Dependent DFT) formalism.* 
This highly successful theoretical formalism is limited to so-called ‘normal’ systems, however, and is 

essentially impossible to apply to superconductors in particular. In the early 1980s, a nonlocal extension 

of the DFT for the study of superconductors was suggested, and has been implemented during the last few 
years by E. K. U. Gross and his group for the study of a few systems. The great success of DFT applied to 

normal electron systems was ensured by the introduction of LDA (Local Density Approximation) form of 

DFT by Kohn and Sham, which leads to local nonlinear coupled partial differential equations, as opposed 
to nonlocal nonlinear coupled integral-partial differential equations. This great advantage of DFT was 

essentially nullified in the extension of the DFT formalism implemented by Gross and collaborators. 

Recently a local extension of the DFT method to superfluid systems has been introduced.  The 

Superfluid LDA (SLDA) and its extension to time dependent phenonema (TD-SLDA) have been applied 
with notable success to the study of nuclei, cold atomic gases in traps, the structure of vortices in neutron 

stars and in cold atomic gases, and to the dynamics of superfluid cold fermionic atomic gases. TD-SLDA 

has been used in particular to study the generation and dynamics of the vortices in a cold atom system in 
3D† and to study the Coulomb excitation of an atomic nucleus by an impinging relativistic heavy ion. 

This work was performed within the SciDAC-UNEDF collaboration.‡  Formally, the TD-SLDA 

equations resemble the time-dependent Bogoliubov-de Gennes equations; there are distinct parallels 
between the TD-LDA and TD Hartree equations. Due to the immense size of the system of coupled 

nonlinear partial differential equations, the TD-SLDA equations in 3D can be solved only on leadership 

computing resources.   

 
The initial goal of the nuclear TD-SLDA code development was to provide a simple and 

straightforward solution of the QRPA (Quasiparticle Random Phase Approximation) equations, which 

describe a set of excited states of atomic nuclei. QRPA is formally the small amplitude limit, or the linear 
response, of a quantum system to an external time-dependent perturbation. The complexity of the QRPA 

is still too great to allow for the study of deformed nuclei, or even to obtain an accurate solution in the 

case of spherical nuclei where the complexity of these equations is significantly reduced. In its traditional 

formulation QRPA amounts to the diagonalization of a very large (non-Hermitian) matrix, and both the 
construction and the diagonalization are extremely time- and memory-consuming.  Accurate solution of 

these equations for a deformed nucleus, even on the largest supercomputers, is not possible without 

drastic truncations that would prove difficult to control and evaluate. We instead suggest studying these 
problems with TD-SLDA, which can be implemented and solved on current leadership class computers.  

In the case of nuclei the TD-SLDA describes the dynamics of the excitation by various probes both in 

the linear regime when the strength of the external probes is weak and in the nonlinear regime when the 
external probes generate strong fields. In particular, the QRPA and the second QRPA (the first correction 

to the linear response regime) as well as all the higher-order corrections can be easily incorporated into 

TD-SLDA. Within TD-SLDA simulations of the excitation of nuclei by gamma rays, nucleons, and even 

by heavy ions can easily be performed.§  Since in TD-SLDA the nuclear projectile and target structures 
and interactions are described within the same framework, there are no theoretical ambiguities arising 

from the poor understanding of reaction models; thus we can in principle hope for a theoretically 

consistent description and more controlled theoretical errors. 

                                                
* see http://www.tddft.org/ 
† see http://www.phys.washington.edu/groups/qmbnt/index.html 

‡ see http://unedf.org/ 

§ see Coulomb excitation of 
48

Cr at http://www.phys.washington.edu/groups/qmbnt/nuclei_dynamics.html 
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TD-SLDA can potentially provide the best theoretical framework for the study of induced nuclear 
fission. Nuclear fission is a topic of fundamental theoretical significance and great practical importance. 

Despite seventy years of intense research, the theoretical models for nuclear fission are still simplistic, 

based mostly on phenomenology and possessing little microscopic underpinning. The reasons are rooted 

in the enormous complexity of the underlying microscopic equations, and the intrinsic difficulty of 
solving them. We are adding the capability to directly address this problem for the first time into the TD-

SLDA software. This is now possible thanks to considerable theoretical progress and the advent of 

petaflop supercomputers. 
TD-SLDA can be applied to study a whole gamut of fundamental problems in the physics of 

fermionic superfluids. The study of the generation and dynamics of vortices in fermionic superfluids has 

been essentially beyond the reach of computers. So far only approximate methods have been used, such as 
the Landau-Ginzburg approach which is valid only near the critical temperature. The two-fluid 

hydrodynamics, another approximate approach developed by Landau in the 1940s to describe the motion 

of superfluids, is inappropriate for the study of quantized vortices as there is no Planck’s constant in 

Landau’s formulation of the two-fluid hydrodynamics. There are no known simple approximations valid 
in the small temperature regime – a regime of great interest in studies of liquid Helium 3 and neutron star 

physics. The whole field of quantum turbulence in fermionic superfluids currently lacks a theoretical 

framework for discussing the extensive set of experimental results generated in many laboratories 
worldwide.  The physics of the pinning and depinning of quantum vortices, in particular in neutron star 

crust physics, also lacks an adequate theoretical framework. Only the Landau-Ginzburg approach has 

been used in the past, even though this approximation is invalid far from the critical regime.  
We hope that the tools we have developed will be valuable to scientists studying the following 

physical phenomena at a minimum: i) the dynamics of nuclear large amplitude collective motion 

including induced fission; ii) the dynamics of vortices in the neutron star crust and the elucidation of the 

starquake mechanism; iii) the generation and dynamics of vortices and the study of the quantum 
turbulence in fermionic superfluids; and iv) the dynamics of cold gases in various external conditions 

(static and time-dependent magnetic fields/Feshbach resonance, static and time-dependent optical lattices, 

reactions to various laser fields, etc.). 

3.1.3 Capability Overview 

The goal of the nuclear TD-SLDA software is to compute on systems in spatial domains that range 
from 403 to 753 fm3 over times up to nearly an attosecond. The total number of nucleons can reach 

thousands (perhaps even tens of thousands) for the neutron star crust case.  

For the study of cold fermionic atomic gases, the goal is to study system sizes up to roughly 1003 

spatial lattice points and of the order of a million time steps. In physical terms this amounts to systems of 
up to 105 particles followed in time for up to hundreds of periods, where a period is roughly the time it 

takes a fermion to cross the system.  

We will have to evolve from 20,000 to 500,000 3D complex wave functions in time. Putting this into 
perspective, other nuclear physicists have reported evolving at most a few hundred wave functions, and 

only in normal systems, when the pairing correlations are neglected. 

3.1.4 Science Driver for Metric Problem 

We want to study the generation and the dynamics of vortices in a unitary Fermi gas and try to 

establish whether quantum turbulence can be observed and under what conditions. Quantum turbulence is 

driven by the vortex-vortex crossing, in which vortex lines are reconnected in a process very similar to 
DNA recombination. In a 3D simulation of this system we will be able to provide a microscopic 

description of the formation of vortex rings and of the reconnection of vortex lines in fermionic 

superfluids for the first time.   
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For nuclei want to study one of a number of phenomena: i) the process of Coulomb excitation of an 

open shell nucleus by a relativistic heavy ion; ii) the gamma and/or nucleon excitation of an open shell 
nucleus; iii) gamma- and/or nucleon-induced nuclear fission. 

 

3.1.5 The Model and Algorithm 

The Superfluid LDA (SLDA), the extension of the DFT to superfluid systems, is based on the 

following energy density functional for the ground state for an unpolarized unitary Fermi gas: 

      
where is the  number (normal) density, is the kinetic energy density, and is the 

anomalous density. The anomalous density vanishes in the normal phase. These densities depend on the 

quasiparticle wave functions .   is an arbitrary external potential in which the 

system might reside,  is the normal part of the interaction energy density and  is the 

renormalized coupling strength of the pairing correlations. Varying the quasiparticle wave functions 

 we obtain the Bogoliubov-de Gennes-like equations 

 

 
which must be solved self-consistently. They represent an infinite set of nonlinear coupled partial 

differential eigenvalue equations. Upon discretization, these equations become nonlinear coupled matrix 

equations that are solved iteratively. We begin with a guess for the densities, which allows us to evaluate 
various potentials (self-energy and pairing potential ). After diagonalization, the 

relevant densities and potentials are reevaluated, and the process is repeated until convergence is 
achieved. The convergence rate can be accelerated by various techniques, such as Broyden’s line search 

algorithm.  

 

In the time-dependent case we consider the variation of a different functional, 

 
All quantities are functions of time. In general the structure of this functional is more complicated, and 
Galilean invariance requires that we use a slightly different form for the kinetic energy density:  
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where  is the time-dependent current density. This illustrates a qualitative difference between the 

static and the dynamic problems: the presence of currents in the latter case.  For the sake of simplicity we 
here omit the equations of motion for the quasiparticle wave functions in their most general form, when 

an effective mass different from the bare of mass is present. The time-dependent evolution equations for 

the quasiparticle wave functions  become 

These represent an infinite set of nonlinear coupled partial differential equations of evolution.  

 

In the nuclear case, the equations for both the static (SLDA) and the time-dependent (TD-SLDA) 
problems are characterized by additional degrees of complexity, one due to the coupling between the 

orbital motion, another due to the spin degrees of freedom, and more due to the existence of both protons 

and neutrons in the nuclear system. The energy density functional depends now on proton and neutron 
number densities, on proton and neutron kinetic energy densities, on the proton and neutron spin-current 

densities, and on the gradients of the proton and neutron densities.  In the case of odd total proton or 

neutron numbers, the energy density functional can depend on the proton and/or neutron spin number 

densities as well. Consequently, while the formal matrix structures of both SLDA and TD-SLDA 
equations are similar for the unitary gas problem and for the nuclear problem, the structure of the nuclear 

problem is significantly more complex. The form of the nuclear Hamiltonian is described in greater detail 

in section describing the Q4 developments. The quasiparticle wave functions have four components in the 
nuclear case, instead of only two in the unitary gas.  The absence of a spin-orbit coupling in the unitary 

gas case means that the four component quasiparticle wave functions can be reduced to only two 

components. 
We represent the quasiparticle wave functions on a discrete three-dimensional spatial lattice with a 

lattice constant a, N lattice points in each spatial direction (although the spatial dimensions of the lattice 

do not in general need to be identical), and periodic boundary conditions.   

In the static (solver) SLDA code we calculate first- and second-order spatial derivatives using a 
matrix representation of the FFT (Fast Fourier Transform) according to the formulas given below, where 

F(x) is the interpolating function of the DVR (Discrete Variable Representation) method. Using this 

interpolating function F(x) we evaluate the corresponding matrix representation of the first and second 
derivatives, as shown in the following equations:  
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For lack of a better notation, we have used above the symbols usually reserved for the gradient and 

Laplacian in 3D for the matrix representation of the first and second derivatives in 1D.  
 

The eigenvalues of the above discrete matrices ∇ and Δ are exactly ikl and –kl
2, as expected. For 

instance, using the DVR method, the discrete representation of the 1D Schrodinger equation 

  
reads 

  
 

In SLDA we need to determine the full eigenvalue spectrum of the 3D Schrödinger equation. In the case 
of the nuclear problem we have to self-consistently solve the equivalent HFB (technically, Bogoliubov-de 

Gennes (BdG)) equations, of dimensionality 4N3
×4N3 in matrix form. For N=50 lattice points in each 

spatial direction, this amounts to diagonalizing and determining the full spectrum of eigenvalues and 
eigenvectors of a 500,000×500,000 Hermitian matrix several hundred times (until self-consistency is 

achieved). In Q2, we performed this diagonalization in two steps, by first diagonalizing the Hartree block, 

which is a Hermitian matrix of size 2N3
×2N3, and then introducing a carefully chosen energy cut-off, a 

matrix that is typically smaller than 2N3
×2N3 in size, to evaluate the effect of the pairing correlations. See 

the Q4 section for changes made to the Q2 nuclear solver. 

In the case of the unitary gas, where there is no spin-orbit interaction, we can proceed with the direct 

diagonalization of the BdG matrix of dimension 2N3
×2N3 or of smaller dimensions in cases where we 

consider homogeneous systems in one spatial direction. If the system is translationally invariant in one 

spatial direction, the quasiparticle wave functions have a simpler structure, 
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and densities and potentials do not depend on the z-variable. Experimentally, this situation can be 

approximately realized in very elongated cigar shaped traps for example.  

The generalization of these formulas to the 3D case of coupled nonlinear equations of many wave 
functions with several components is straightforward and easy to code. In the DVR method only the 

kinetic energy and spin-orbit interaction (spatial derivatives) are represented as matrices, while all local 

potentials appear as diagonal matrices, thus making the evaluation of all these quantum operators simple 

to implement numerically. 
In the TD-SLDA method we evaluate only the action of the Hamiltonian on various wave functions, 

so diagonalization and determination of the eigenvalues is not necessary.  To speed up the evaluation of 

first- and second-order derivatives, we use the FFTW (the Fastest Fourier Transform in the West) rather 
than a matrix representation, thereby avoiding matrix operations altogether.  This allows us to evaluate 

spatial derivatives with extremely high accuracy and with essentially the same speed as a multi-step finite 

difference formula.   
The time evolution of the TD-SLDA equations is performed using a multistep, fifth-order predictor-

corrector-modifier Adams-Bashforth-Milne method: 

  
We have selected this method for its unique combination of high accuracy and numerical stability, and 
economical function-evaluation footprint. It requires only two evaluations of the right hand side of the 

differential equations per time step, a number that cannot be reduced without going to a lower accuracy 

numerical method. 

3.1.6 Q2 Baseline Problem Results 

We wish to investigate the excitation of a superfluid unitary gas constrained to a can-shaped external 
potential through a process of stirring with a rod and ball. The goal is to study quantum turbulence in 

Fermi gas systems and in particular to investigate the features of vortex formation and dynamics. In the 

Q2 problem we generated two sets of performance benchmark data for the unitary gas capability 

described in the text. Each will be described briefly here. 
 

Problem 1. The target problem is to execute a system with 5216 particles on an Nx*Ny*Nz = 

50×50×100 lattice for approximately 100,000 time steps. Due to the cost of executing the problem, we 

benchmarked this system for 2051 time steps to gather sufficient performance data as a reference for 

future enhancements and to demonstrate the full software capability. The solver was first executed to self-
consistently construct the stationary solutions of the system that will be required for the time-dependent 
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analysis we aim to perform. The solver exploits the homogeneity in the z-component of the problem 

geometry and executes each kz value independently (there are Nz / 2 + 1 such values in general) within a 

self-consistent iteration. This amounts to forming 51 independent parallel work groups, each of which 

will simultaneously numerically diagonalize a reduced dimension (n = 2*Nx*Ny versus 2*Nx*Ny*Nz) 

matrix each self-consistent iteration. It should be clear that one achieves a nearly perfect strong scaling 
curve when computing O(Nz) diagonalizations simultaneously versus in sequence. In the run, the size of 

each work group was chosen to be 144 PEs amounting to a virtual 12×12 process grid over which the 

matrix elements are block-cyclically distributed. Thus, the solver utilized a total of 7344 PEs and 129 

iterations were performed to achieve convergence. The error after each iteration of this run is plotted in 

Figure 3.1.1. The system was numerically resolved to machine precision for the problem dimension. 
 

 
Figure 3.1.1: Error after each self-consistent iteration in computing the first Q2 benchmark problem. 

 
After the solutions converge, the wave function data is written to a single Lustre file, three relevant 

observables are written to a second Lustre file, and some scalar, problem-related metadata is written to a 

text file. All the write operations are performed with POSIX semantics. The size of these data sets is 
<NWF> * Nx*Ny*Nz * 2*sizeof(double complex). For this problem, the number of 

quasiparticle wave functions is <NWF>  = 103,917. Thus, 8.31336×1011 Bytes (over 774 GB) of binary 

data were written for the wave function data alone. The analysis data file has magnitude 3*Nx*Ny*Nz 

* sizeof(double), or 6000000 Bytes of binary data. The following table summarizes the aggregated 

machine events measured during problem execution. The results of Run 1 are separated into an 
initialization phase prior to the self-consistent iteration (Nz / 2 + 1 grids are formed and the operators and 

initial matrix elements are constructed) and a second phase defined by the self-consistent iterations plus 

the data dump after convergence. The total runtime was 184m 54.515s (or 11,094.515s). 
 

Machine Event  

(7344PEs) 
Phase 1  

(Initialization) 
Phase 2  

(Self-consistent iterations and data 

dump) 

Instructions Retired 16231470834773 333492109460091733 

Floating Point Operations 6323441040 3628444034788875 

Time (s) 0.661899 11,084.637851 

  Table 3.1.1: Results of instrumentation of Run 1 of the first benchmark problem. 
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The next run of this Q2 benchmark, Run 2, was intended to demonstrate the capability of the 

time-dependent software to successfully load and initialize the physical system created by the solver, 
evolve the system in time,  and to checkpoint the time dependent computation –a step necessary to 

continue the time evolution of long simulations while adhering to the scheduling policies of a single run 

on the target platform. The same lattice and physical problem parameters are utilized but the time 

dependent code executes on 103,917PEs of the target platform in an effort to exploit all the coarse grain 
parallelism in the time evolution algorithm –e.g. one quasiparticle wave function per MPI process. The 

total runtime for this run was 140m 40.914s (or 8,440.914s). This run can be described by three distinct 

phases of code execution. In Phase 1, the solutions and observables generated by the solver are read and 
distributed, the lattices are initialized, and the lattice operators and derivatives are computed to initialize 

the time evolution algorithm. During Phase 2 of Run 2, exactly one time step of the system is executed 

and exactly one set of analysis data is written to a single Lustre FILE. In Phase 3, the code checkpoints 
the necessary data required for a restart of the simulation and then code termination occurs.  This step 

requires writing 22*<NWF>*Nx*Ny*Nz*sizeof(double complex) + 

(2*sizeof(double) + sizeof(double complex))*Nx*Ny*Nz BYTEs of data. For the 

50×50×100 and <NWF> = 103,917 problem this amounts to writing just over 8TB of data required for a 

restart. The write is organized into 24 I/O groups and thus the data from each group of approximately 

4330PEs is collected into a lead process per I/O group for each relevant numerical data structure and 
written to a unique Lustre file, totaling 24 Lustre files per data structure written. There is one additional 

Lustre file for the potentials and pairing field. Run 2 demonstrates the connection between the solver and 

the time evolution software as well as the checkpoint capability.  The results are reproduced in Table 
3.1.2. 

 
Machine Event 

(103,917PEs) 
Phase 1 

(Read and distribute data; 

initialization) 

Phase 2 

(Execute single timestep 

and write analysis data) 

Phase 3 

(Checkpointing and 

termination) 

Instructions Retired 885594209315035579 7458651188051530 2645109807479392620 

Floating Point Ops 40887312859337 150994975407499 729823 

Time (s) 2049.428677 4.896880 6236.922754 
Table 3.1.2: Results of instrumentation of Run 2 of the first benchmark problem. 

 

Run 3 of the Q2 unitary gas benchmark can be considered as having two distinct execution 
phases. Phase 1 demonstrates the restart capability of the time dependent software by continuing the 

computation at the subsequent time step to the time step last executed by the previous time-dependent run 

– Run 2 in this benchmark example. The number of I/O groups used for restart is currently coded to be 

the same number of I/O groups used to checkpoint the problem – 24 in this example. The data is read 
from the respective Lustre files by a root process in each group and distributed to the processes in the 

same modulo class. Phase 2 evolves the system 2050 time steps, executes exactly 25 I/O events of the 

time dependent analysis data, and exits. The total runtime for Run 3 was 219m 30.400s (or 13,170.4s). 
The following table represents the aggregated machine events for these two phases of execution. The 

average aggregated floating point count per 82 time steps over the 25 I/O events was 1.2941×1016 with a 

standard deviation of 3.10993×1013. The average time required to execute 82 time steps and conduct a 

single I/O write of observable data event was 254.933521s, or 3.108945378s if amortized across all time 

steps. This is the time that we would like to minimize if at all possible. 
  

Machine Event 
(103,917PEs) 

Phase 1 

(Read restart data and initialize) 
Phase 2 

(Run 2050 time steps) 

Instructions Retired 2821900819478064487 1.59386e18 

Floating Point Ops              26731359080 3.23524e17 

Time(s)                  6540.557430 6373.339007 
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Table 3.1.3: Results of instrumentation of Run 3 of the first benchmark problem. 

  

The total cost of the 50×50×100 unitary fermion gas system Q2 benchmark on the target platform can 

be determined by aggregating results for each machine event and noting that the CPU time results are 

weighted by the total number of PEs involved in the particular run and converted to units of hours (time-

dependent runs are bolded): 

 
Machine 

Data 

Run 1 Run 2 Run 3 Total 

Instructions 3.335083409e17 3.538162667e18 4.415760819e18 8.287431827e18 

Floating 

Point Ops 

3.628450357e15 1.91882289e14 3.235240267e17 3.273443593e17 

Wall Time(s) 11,085.29975 8,291.248311 12,913.89644   32,290.4445 

CPU 

$(hours) 

22,614.01149 239,333.7919 372,770.3823 634,718.1857 

PEs 7,344 103,917 103,917  
Table 3.1.4: Total cost of unitary fermion gas system Q2 benchmark. 

 

Our two primary goals are to improve the efficiency of computing a time step per wave function, and 
to use the optimized version of the software to study a similar but more complex system on a larger lattice 

completing O(105) time steps on at least twice the PEs utilized in Q2.  If we can identify more coarse-

grained parallelism in the code, we may execute a strong scaling result for this system in Q4. Otherwise, 
we will pursue a weak scaling result based on the nuclear code base. 

 

Corollary of Problem 1. A problem with reduced complexity but directly related to the benchmark 
problem above allows us to demonstrate the full software capability by completing a related simulation. 

We executed the ball and rod excitation of a unitary Fermi gas system with 300 particles on a 32×32×32 

lattice for a total of 104,132 time steps including 1509 I/O events of analysis data. The total simulation 
advanced much like the previous benchmark problem. In Run 1 the self-consistent solver generated 

stationary solutions for the system. Run 2 used the results of the solver to initialize the time dependent 

code, executed a total 87271 time steps including 1264 completed I/O events, and check pointed the 
computation for restart. Run 3 restarted the time-dependent calculation at time step 87272, executed 

16861 additional time steps including 245 I/O events, and exited cleanly. Below is a brief table 

summarizing the measured time data for these runs (with time-dependent runs in bold). The machine 

event data for the runs are also available. 
 
 Run 1 Run 2  Run 3 Total 

PEs 612 9458 9458  

Time(s) 451.081 34,909.812 11,020.127 46,381.02 

CPU $(hours) 76.68377 91,715.83386 28,952.32255 120,744.8401 
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Table 3.1.5:  Results for unitary Fermi gas system benchmark problem. 

 

 
Figure 3.1.2: Energy of 300 particle system on 32

3
 lattice as function of time. 

 
Figure 3.1.2 depicts the energy of the 300 particle system and the magnitude of the excitation on a 

32^3 lattice as a function of time. The system is excited adiabatically through the stirring of a rod and 

ball. The excitation is adiabatically turned off and the system is left to evolve. Three full stirs occur in 
total. 

In Figure 3.1.3, the magnitude of the pairing field as a function of time is shown.  Several magnitudes 

of the observable and a segment of the geometry have been removed from the plot to enable the viewing 

the interior of the system.  The plots are ordered in row-major format (Silo frame numbers 0, 208, 256, 
661, 722, 1095, 1243, 1388).  Figure 3.1.3(a) depicts the unexcited system.  In Figure 3.1.3(b) the ball 

and rod are being introduced.  In Figure 3.1.3(c) the system respnse to the low-magnitude stirring strength 

begins to appear. Figure 3.1.3(d) shows two vortices that are already well formed.  One of the vortices is 
being impinged upon by the ball, which has higher angular frequency than the vortex. Figure 3.1.3(e) 

shows two vortices in close proximity situated between the ball and rod.  In Figure 3.1.3(f) the system 

depicts clearly five well-formed vortices, two of which are still entangled.  There is no external excitation 
at this time or in subsequent frames.  In Figure 3.1.3(g) the five vortices continue to circulate and the 

separation of the two entangled vortices is nearly complete.  In Figure 3.1.3(h) there are clearly five 

disconnected vortices.  To relate the plots in Figure 3.1.3 to the times in Figure 3.1.2, multiply the Silo 

frame number by the iterations/IO event and multiply this product by the time step (iterations/IO event = 
69, time step = 0.008067). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 



 

25 

  

(g) (h) 
Figure 3.1.3: Eight instances from the 3-D movie made with VisIt of excitation of the stirring with ball 

and rod of a fermion unitary gas system. 

 

Comment on Eigendecompositions for the SLDA static solvers. It is worth repeating here that for the 

self-consistent solvers we have to diagonalize matrices of dimension N = 2 Nx × Ny × Nz (or N = 4 Nx × 

Ny × Nz in a self-consistent iteration) possibly hundreds of times to achieve convergence in the general 

case (as mentioned gross reductions in complexity can be exploited if the problem specifics allow one to 
exploit some symmetry properties). We were originally utilizing a parallel QR-based subroutine to 

achieve the diagonalizations. However, there exists a much more efficient method due to Cuppen that 

applies a divide-and-conquer procedure to achieve more precise numerics at nearly four times the speed 
on all problems we have tested on the target architecture. The method reduces the original problem to two 

independent symmetric tridiagonal eigenvalue problems of dimension k and N – k. This reduction can be 

repeated until a stopping condition is satisfied, at which point QR iteration is applied on a much smaller 

system. The subroutine pzheevd() in the Cray Scientific Library implements the divide-and-conquer 

procedure but from our experience is not as broadly used as the QR-based pzheev() subroutine.  

We performed a strong scaling study comparing the parallel QR and parallel Cuppen’s algorithms for 
a fixed small Hermitian problem of dimensionality 4096 × 4096.  First, we intentionally pushed the 

problem until further parallelization yielded no further reduction in runtime.  Figure 3.1.4 shows that the 

divide-and-conquer algorithm runtime is a quarter of the parallel QR runtime, the algorithm produces 
more accurate results, and it does not introduce additional floating-point operations as more processes are 

used.  The trend of increased floating point computations and increased runtimes gets worse on larger 

matrices and larger process counts for the parallel QR. Because of its advantages, we now use Cuppen’s 
algorithm.  
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Figure 3.1.4: Strong scaling study comparing parallel QR and parallel Cuppen's algorithms for fixed 

small Hermitian problem, n=4096. 

 

Figure 3.1.5 shows the execution time compared to the number of PEs on Jaguar Cray XT5 for three 

problems solved with the nuclear solver software.  Each iteration is dominated by the cost to diagonalize 
the large Hartree matrices and perform another smaller diagonalization.  The problems shown correspond 

almost exactly to executing the solver on 303, 403, and 503 lattices, respectively.  The 503 lattice problem 

(the problem of dimension 250,000 in the figure) defines a practical limit for the nuclear solver on the 
target architecture, since both the proton and neutron work groups have to diagonalize such a matrix 
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simultaneously.  Thus in this example the total number of PEs for the 503 problem would be 318×318 + 

318×318 = 202,248, where the virtual rectangular process grid required by the diagonalization routines in 

each particle group would be 318 rows by 318 columns.  (In fact, we could reduce the time of the 

computation slightly by executing at close to full-machine scale on 334 × 334 grids.) 

 

 
Figure 3.1.5: Execution time vs. Number of PEs for three problems for nuclear solver portion of software. 

 

Problem 2. The nuclear problem is significantly more complex in both the solver and time-dependent 

implementations. In the Q2 benchmark we wanted to demonstrate the connection between the solver 
application and the time-dependent code, and test the accuracy of the time evolution of the nuclear system 

in the absence of any excitation. Owing to the cost of achieving full self-consistency in the general 

nuclear solver and desiring to test the newly developed time dependent capability, we chose a supposed 
spherical nucleus, Tungsten-198 (Z = 74, N = 124), and exploited existing software for spherical systems 

and knowledge of the system to hand-code a fairly accurate potential for the system into the solver code, 

therefore requiring the execution of only a single iteration for self-consistent convergence. The solver and 
time-dependent nuclear codes executed the problem on a 403 lattice with constant lattice spacing of  

0.75fm in each spatial dimension and energy cutoff at 100MeV. The solver computed 7466 proton-

dedicated and 8946 neutron-dedicated quasiparticle wave functions to an accuracy 1×10-8MeV. The 

solutions are complex, four-component wavefunctions. Thus, the solver writes <NWF> * 4*Nx*Ny*Nz 

* sizeof(double complex) BYTEs to be used by the time-dependent nuclear code. For the 

benchmark problem this equates to about 64GB of wave function data. In addition to the wave function 

data, a small text file is created for problem-specific scalar data that is needed by the time-dependent code 

in order to match the problem specifics of the solver. The code was executed a second time and profiled 

again without the I/O turned on, thus isolating the cost of writing the wave function data needed by the 
time dependent code. For Run 1, the solver executed for 110m 36.589s (or 6636.589s) on 73728 PEs of 

the target architecture. Run 2 executed for 87m 52.916s (or 5272.916s). Since we are interested in the 

dynamics of nuclear systems, Run 1 is the relevant Q2 benchmark for the solver. The number of PEs is 
73,728 = 2×192×192 because both protons and neutrons diagonalize a unique 128,000×128,000 

Hermitian matrix simultaneously in two disjoint 192×192 virtual rectangular process grids. The relevant 

metrics for the solver are both the number of iterations required to achieve self-consistency and the cost 

per self-consistent iteration. Table 3.1.6 summarizes the measured machine events for the solver 

benchmark runs, which are separated into an initialization phase followed by the loop (in this case only a 
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single iteration of the loop) until self-consistency is achieved, plus the option of writing wave functions 

for the time-dependent code (Phase 2): 
  

Machine Event 

(73,728PEs) 

Run1 - Phase 1 Run 1 (I/O) - Phase 2 Run 2  – Phase 1 Run 2 – Phase 2 

Instructions 

Retired 

23346203445224852 1782654886997981840 23819899169287440 1401740648364960545 

Floating Point 

Ops 

   25603102378  53582334657408658 25603102378 53459232137049469 

Time(s)     160.635993              6377.887773 161.168643 5019.676603 
Table 3.1.6: Measured machine events for solver runs of second benchmark problem. 

 

In Q2, we reported the time-dependent nuclear code results in two phases. Phase 1 is the 

initialization phase during which the wave functions constructed by the solver software are read from disk 
and distributed in the proton and neutron groups respectively, all the relevant wave function data needed 

for time propagation are initialized, and the lattice parameters, potentials, densities, and energy are 

computed prior to entering the time stepping loop. Phase 2 of execution is the time evolution of the 

system including the write of the relevant time dependent densities and currents required for additional 
analysis. Neither the Q2 solver nor the Q2 time-dependent nuclear codes exploit collective I/O over the 

Lustre file system – Fortran semantics are used. The benchmark executed on as many processes as 

quasiparticle wave functions generated by the solver, 16,412PEs, plus two PEs used to compose and 
exchange densities between the neutron and proton communicators.. The time-dependent code completed 

execution in 35m 9.581s (or 2109.518s).  The performance results are reproduced in Table 3.1.7. In the 

benchmark, 200 time steps were executed and < 2MB of densities (and no currents) were written. Thus, 
the cost to evolve the entire set of 16,412 wave functions on 16,414 PEs for a single time step is estimated 

as 4.792598095 s / ts. Said another way, if the job were executed on a single PE the time to evolve this 

system a single time step at this rate would require no less than 22 hours, and the entire benchmark would 

require nearly 4,400 hours or about a half year!  
 

  
Machine Event (16,414PEs) Phase 1 Phase 2 

Instructions Retired 76088401412884728 48871991142253943 

Floating Point Ops     2020709113712  1601488874412091 

Time (s)  1125.904417 958.519619 
Table 3.1.7: Performance of time-dependent nuclear code on second benchmark problem. 

 

Table 3.1.8 summarizes the aggregated performance results of the Q2 benchmark of the current 

nuclear solver (Run1) and time-evolution software technology (Run 2, in bold): 
 
Machine Data Run 1 Run 2 Total 

Instructions 1.806001090443207e+18 1.249603925551387e+17 1.930961483e+18 

Floating Point 

Ops 

5.358236026051104e+16 1603509583525803 5.518586984e+16 

Wall Time (s) 6538.523766 2084.424036   8622.947802 

CPU $(hours) 133,908.9667 9502.6575 143411.6242 

PEs 73,728 16,412  
Table 3.1.8: Aggregated performance results of second benchmark problem. 

 

Table 3.1.9 reproduces selected observable data that was either computed or input by the nuclear 

solver, or subsequently computed by the time-dependent nuclear code and outpt after the last timestep in 
the second Q2 benchmark run.  There is an error somewhere in the Q2 codes, since the number of 
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particles in the system should remain constant. However, the number of particles was not constant and in 

particular the number of proton particles is wrong. Another goal for Q4 is to demonstrate that the nuclear 
portion of the code is free of such numerical problems. We will identify and correct the problem by the 

Q4 deadline.  The computing capability is still remarkable and unprecedented.   

 
Observable  Nuclear Solver Nuclear Time Evolver 

E_tot -1521.753838292821 -1521.865932819248 

E_kin 3762.407463 3762.407463 

Laplacian(Rho) 307.692969 307.692969 

Rho * Tau 1275.879974 1275.879974 

Gamma 13676.468327 13676.468327 

Spin orbit -89.878283 -89.878283 

Coulomb 733.210176 733.210176 

J (current) -0.000001 -0.000003 

Neutron pairing (n-p) -3.668164309096726 -3.644882803655416  

Proton pairing (p-p) -8.477893427168159 -8.613267322628873 

Proton particle number 74 76.49921931460780 

Neutron particle number 124 124.7264648073978 

A = Z + N 198 201.2256841220056 

Table 3.1.9: Selected observable data computed (or input) by the nuclear solver or computed by the time-

dependent nuclear code and reported after the last timestep in the second benchmark run. 

 

The time-evolution code was demonstrated last summer at the UNEDF all-hands meeting. In the 
first application of TD-SLDA to the nuclear system, we considered the response of 48Cr to a Coulomb 

field generated by a relativistic projectile.  The projectile interacts with the target from 20 fm to -20 fm.  

The impact parameter is z = 10 fm, and the projectile moves in the yz-plane.  The plots in Figure 3.1.6 are 
snapshots of a movie we made of the experiment.  On the left is a schematic of the process and the 

evolution in time of the system, and proton and neutron centers-of-mass.  On the right is the variation of 

isovector and isoscalar density of the target nucleus seen from the yz- and xy-planes. 

 

  
Figure 3.1.6: Response of 48Cr to Coulomb field generated by relativistic projectile. 

 

3.1.7 Developments, Enhancements, and Q4 Benchmark Results 

In Q3 and Q4, we turned our primary focus to the nuclear code capabilities. We have completed the 

nuclear solver capability, addressed some numerical and efficiency issues in the time dependent code, 

have worked on the performance and scalability of the I/O capabilities connecting the solver to the time 
dependent code, and developed a scalable and high-performance checkpoint and restart function for 

extremely large nuclear data sets. 
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For the nuclear problem the static solver and TD-SLDA have the capability of using a general 
functional of the form that is highly non-linear and non-local in effect: 

 
where C_T are real coefficients fitted to reproduce observables (like binding energies and radii) over a 

large number of nuclei. Note that the Galilenean invariance requires the following relations: 

        
There are several sets of C_T coefficients corresponding to different functionals, which describe a large 

number of nuclei with varying degrees of accuracy. In the present code we have introduced two such sets 

(called SLY4 and SKM*) in the solver, and one in the time-dependent code (SLY4). There is no 
particular reason we have not extended yet to cover all the functionals, but SLY4 is wildly used in similar 

calculations. The one-body Hamiltonian is obtained by the minimization of the energy functional. It has 

the form: 

   
 

Taking into account the superfluid part of the functional one obtains the Hartree-Fock-Bogoliubov 

equation : 

 

 
 

However, because for even-even nuclei the mean field solution does not break the time-reversal 

invariance, one can show analytically that the terms involving the spin densities and the currents vanish. 
On the other hand, all the terms are included in the time-dependent code, and one first check that the 

interface between the two nuclear codes is correct is obtaining vanishing spin densities and small currents. 

The currents are not exactly zero because the gradient operator is not real in our implementation, but the 
errors decrease with increasing the momentum cutoff (or equivalently with decreasing the lattice spacing) 
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as they numerically should. Despite the small errors in the currents, it is important to use the current 

implementation of the operators on the lattice because of the compatibility with the Fourier transform. 
Recall that the two codes have a different but compatible implementation. In the solver, we employ a 

matrix approach in which all the operators are represented as matrices utilizing the DVR described in 

section 3.1.5. The matrix to be diagonalized is efficiently generated for both neutrons and protons in 

parallel and adhering to a block cyclic decomposition over two respective virtual process grids. In the 

time-dependent code, the operators are applied directly on the wave functions using FFTW. After Q2, the 

solver was the redesigned. In Q2 the HFB solutions were obtained in two steps: first the Hartree matrix of 

dimension 2Nxyz (2*Nx*Ny*Nz) was diagonalized to obtain the H (HF) orbitals: 

 

    
 

In the second step, only the orbitals up to a chosen cutoff (|ε_i − µ| < E_cut ) were used as a basis in 

which one expands the u and v components, e.g., 

, where the complex coefficients C_i are obtained by a second 

diagonalization which includes the pairing part. Such an approach is efficient when the energy cutoff is 

relatively small. However, when the cutoff is large, as required in our calculations, the dimension of the 

second diagonalization becomes larger than 2Nxyz , thus the whole calculation required two 

diagonalizations of dimension 2Nxyz . This approach induces errors during the time evolution in the form 
of particle non-conservation. Therefore, in the Q4 implementation, we diagonalize directly a dimension 

4Nxyz matrix that includes both pairing and normal contributions at the same time.  

 The one-body Hamiltonian h(⃗r) is Hermitian, but numerical errors can make the matrix non-

hermitian without additional caution. Thus, to avoid this possible source of errors, we symmetrize the 

terms involving odd powers of gradients so that the Hamiltonian is numerically Hermitian in our basis on 

the lattice. One finds the Laplacian operator includes effective mass corrections:  
 

.  

 
The spin-orbit terms require special treatment: 

 

. The 

term involving the current density becomes: 
 

 A similar 

result holds for the terms. While in Q2 the solver used the symmetrized operators, they were not 

symmetrized in the time dependent code. The symmetrization has been implemented and tested in the Q4 
time dependent code. This numerical enhancement has introduced a considerable amount of extra work 

not performed in the Q2 code. The extra work is partially offset by another change in the Q4 code. In Q2 

we were computing derivatives of the v components six times during a time step: four times for 
computing currents and twice when the evolution was performed. In the current implementation, we 

calculate the derivatives two times (each time step requires two applications of the Hamiltonian, thus 



 

32 

requiring the two calculations), save and reuse them when necessary. We have also eliminated a series of 

assignments in the most time-consuming sections of the code by more efficiently grouping the 

calculations together.  

 In the Q4 codes we employ a more accurate calculation of the Coulomb potential. In both Q2 

nuclear codes the long-range part of Coulomb potential is computed analytically by considering a 
Gaussian distribution of charge with the same number of particles as the proton distribution. The 

Gaussian distribution is placed in the proton center of mass. This approach is particularly accurate when 

the proton distribution is spherical or almost spherical. In the presence of large deformations like when 

the nuclei are stretched with dipole and quadrupole fields, however, the deformation becomes too large to 
yield a correct description of the long range of the Coulomb potential. This is why in the current 

implementation we have added a second Gaussian distribution; both distributions are displaced 

symmetrically from the charge center, thus allowing a better description of the Coulomb field. The new 
implementation is present in both the static and the dynamic codes. In the future, we might need to add 

more Gaussian distributions in order to accurately describe non-axial deformations.  

 We have added, in the Q4 TD implementation, the possibility to turn on absorbing boundary 
conditions. While they are not necessary for low-amplitude excitations, such a feature is essential for 

simulations involving fragments that break and acquire kinetic energy so that they are pushed to the 

boundaries. Because of the periodicity of the lattice, the fragments exiting the box on one side, enter the 

box on the symmetric side in the absence of absorption thus making the analysis complicated and 
changing the process initially studied. In the presence of the absorbing boundary conditions, the 

fragment(s) do not reappear making possible the study of the remaining fragment.  

 As a test of the implementation, we have taken a fixed potential and obtained the eigenvectors, 
which we then feed into the time-dependent code. In the absence of external excitations, the solution is 

stationary, and, except for a time-dependent complex phase, the eigenvectors should remain the same. 

This is exactly what we observe, obtaining the time derivative zero within numerical errors. Therefore we 
are confident that the changes to the Q4 have been correctly implemented. 

 

I/O 

 

There have been four major I/O algorithms developed and tested since the Q2 codes were 

benchmarked: a new routine to store the solutions generated from the ground state solver to disk, a new 

routine to read and distribute the ground state solutions from disk into the time dependent code, a new 
routine to checkpoint the time dependent data, a new routine to read and distribute the time dependent 

data needed for restarting time dependent computations.  Each routine is described briefly now. 

In the Q2 solver the converged solutions were block cyclically decomposed over two disjoint 

rectangular (P rows x Q columns) virtual process grids –one for proton solutions, one for neutron 
solutions. The Q2 algorithm executed a loop in each communicator over the indices of the solutions to be 

retained whereby each decomposed solution was transformed into its global form by reduction to the root 

process at which time the root process would write the solution via Fortran semantics. The remaining 
processes waited for the root process to return from writing to continue the process until each solution had 

been assembled and written. Clearly, per communicator, there are PxQ – P processes that do nothing but 

contribute a zero value during the reduction (assembly) phase, and PxQ – 1 processes that do nothing but 
wait on the writing process during the write. We modified the Q4 I/O algorithm in several ways. First, we 

form either 88 or Q I/O groups, whichever is larger, and assign the process that has the lowest canonical 

process rank from the group to be the root process responsible for leading the assembly of solutions to be 

written and performing the actual write of the solutions to an offset region in the solutions file. The actual 
I/O is now achieved using directly some Lustre semantics to prepare the file system to perform a parallel 

write event, then the write is executed in parallel. Thus, per communicator, there are PxQ – Niogroups * P 

processes that do nothing but contribute a zero value during the reduction (assembly) phase, and PxQ – 
Niogroup processes that wait on write. 
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Next, the Q2 time dependent nuclear code defined a proton and neutron communictor space and 

assigned a single process to execute the read and subsequent point-point distribution of the ground state 
solutions to the set of MPI processes allocated for the problem prior to initializing a time dependent run. 

Thus, each Np - 2 MPI processes waited per solution per communicator while while the root process and 

the process that owned the particular solution conducted an exchange. The Q4 code forms Niogroups and 

uses Lustre semantics to attack the read and distribution of solutions problem in parallel employing 
modulo classes over the Niogroups and point-point communications. Thus, in each communicator, 

Np/Niogroups -2 processes wait per solution per I/O group per communicator while while the root 

process of the modulo class (1-1 with the I/O group) and the process that owns the particular solution 
conduct an exchange. 

Furthermore, we have completed the nuclear time-dependent checkpoint and restart capability. At the 

end of Q2 we were able to read the solutions from the dft solver and iterate as many time steps possible in 
a single execution event. But, without a check point and restart capability, we were severely limited to 

short wall time scale simulations. We are now capable of very sophisticated nuclear studies that require 

10K to 100K timesteps (and more if the simulation demands it and we are permitted the allocation). The 

algorithm is very similar to that employed in the unitary gas codes except that there are more I/O groups 

defined and that the total volume of data needed to continue an interrupted problem is 44 * NWF * Nx 
* Ny * Nz * sizeof( double complex ), a factor of two larger than the unitary gas code.  

 

Sample Result from Q4 Nuclear Codes Figure 3.1.7 depicts a new result obtained with the 

enhanced and corrected Q4 nuclear codes. The energy and deformation parameter are plotted as a 

function of time for a quadropole excitation experiment on 280Cf  on 323 lattice run and 43,380 qpwfs. 
The solver wrote roughly 85GB of solution data. In one execution event, the time-dependent code read 

and distributed the groundstate solutions (85GB), executed a total 10,951 time steps, completed 1095 I/O 

events of analysis data, and check-pointed over 932GB of data needed to continue the calculation. In a 
second execution event,  the time dependent code restarted (reading and distributing over 932GB of data) 

at time step 10,952, executed 2,121 additional time steps plus 212 additional I/O events, and check 

pointed (>932GB) again. In the third and final run of the simulation experiment, the time dependent code 
restarted (again, reading and distributing over 932GB of data) at time step 13,073, executed 101 

additional time steps plus 10 additional I/O events, and exited cleanly. In total 13,173 time steps were 

taken including 1317 I/O events of analysis data. The figure is intended to show the correctness of our 

nuclear restart capability (the vertical lines separate restart events). The nucleus is stretched to 
deformation and then let go to evolve. LACM ensues with subsequent induced fission process revealed.  

 

 

 
Figure 3.1.7: (left) Sample problem result demonstrating the capability of the nuclear codes to work together 

and resolve a highly non-trivial excitation. The nucleus is stretched to deformation and then let go to evolve. 
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The energy and deformation parameter are plotted as a function of time for the quadropole excitation 

experiment on 280Cf -a 32
3
 lattice run and 43,380 qpwfs. Three checkpoints and two restarts are plotted. The 

plot is intended to show the correctness of our nuclear restart capability (the vertical lines separate restart 

events). (right) Quadropole excitation of 280Cf nucleus. LACM ensues with subsequent induced fission 

process revealed. 
 

 
Figure 3.1.8: Snapshots from unitary gas vortex formation calculation of the ball and rod excitation of 

the 300 particle dilute Fermi gas system executed in Q2. We have added a high resolution movie capability 

since Q2 to our analysis tools to be used for either unitary gas or nuclear systems. Currently we use VisIt to 

export JPEG files and then these are imported into Apple’s iMovie software. We export MPEG-4 videos with 

annotation.  

 
 

Q4 Problem In Q4 we again demonstrate the connection between the solver and the time-dependent 

code. First we execute the solver. Next we test the accuracy of the time evolution of the nuclear system in 

the absence of any excitation for 200 time steps. We wish to study 238U (Z = 92, N = 146). As in Q2, we 
computed a potential for the system and hand-coded the solver code with it thus requiring the execution 

of only a single iteration for convergence of the ground state solutions. The solver and time-dependent 

nuclear codes executed the problem on a 40×40×64 lattice with constant lattice spacing of 1.25 fm in each 

spatial dimension and energy cutoff at 100 MeV. The solver computed 67,118 proton-dedicated and 

69,508 neutron-dedicated quasi-particle wave functions to an accuracy 1×10-8 MeV. Thus, the solver 

wrote <NWF>*4*Nx*Ny*Nz*sizeof(double complex) bytes of solution data to be used by the 

time-dependent nuclear code -this equates to about 833.8989258 GB of ground state data. In addition to 

the wave function data, a small text file is created for problem-specific scalar data that is needed by the 
time-dependent code in order to match the problem specifics of the solver.  The Q2 solver machine event 

results were separated into two phases, so we present the Q4 results in two phases to make comparison to 

the Q2 I/O results possible: phase 1 includes initialization and the self-consistent step (that includes the 
diagonalizations); phase 2 is the I/O write phase. It is noted that there are several minutes we do not report 

in the numbers in Table 3.1.10 below – the difference between the ‘time’ function and the phases of 

computing measured internally. The difference is in the collection and organization of machine event 
data, the load and exit times of the binary on over 97% of the entire machine, and the memory munging 

and lattice cleansing routine at the end of the Q4 solver. We use the wall time result from the ‘time’ 

function in the final analysis. 

  
real 306m33.181s 
user 1m1.172s 
sys 0m2.520s 
 

     time   ins    fp     dcm 
h:                263532        23818606378382           35517036900          11608961526 

....



 

35 

D:           12852934280   5417482530533416527    438602965016290213     1229776528957498 
SC:            4740803452   1382169375376583812     31667517838858134     282025495545468 
WR:             245194223     78045799390130327        34603299588819       8045835615805 
 

     time   ins    fp     dcm 
h:                263995        23807612809267           35517036900          11562647556 
D:           11407030138   4754089970506414484    438597416050424247     1183927475665207 
SC:            6186768475   2012390402868940080     32795357968382774     315267396285921 
WR:             236927985     83437414579954467        35895770295819       9678774688982 

 
Figure 3.1.7: Raw solver machine event data (protons and neutrons). 

 

 

 
Machine Event (217,800PEs) Phase 1 Phase 2 

Instructions Retired 1.356617990550454e+19 1.614832139700848e+17 

Floating Point Ops     9.416633279080292e+17  70499069884638 

Time (s)  17594.062608 245.194223 
Table 3.1.10: Performance results of Q4 238U benchmark solver problem. 

 
 

The time-dependent nuclear code executes in two phases as in Q2. Phase 1 is the initialization phase 

during which the wave functions constructed by the solver software are read from disk and distributed in 
the proton and neutron groups respectively, all the relevant wave function data needed for time 

propagation are initialized, and the lattice parameters, potentials, densities, and energy are computed prior 

to entering the time stepping loop. Phase 2 of execution is the time evolution of the system including the 

write of the relevant time dependent densities and currents required for additional analysis. 200 time steps 
were executed in Q4 on the 238U ground state solutions, and all densities and currents were written each 

10 time steps (< 85MB). We present the raw data for the time-dependent code in Figure 3.1.8, and the 

machine event results of the Q4 benchmark of the enhanced nuclear solver and time-evolution software 
technologies in Table 3.1.11. 

 
real 33m51.541s 
user 0m27.878s 
sys 0m1.740s 
 

          time   ins    fp     dcm 
  init:              32228731      9045196589846562           91057643393          363095113632 
   I/O:             330729676    163810654394246847           55971027102         1848702550452 
t_loop:            1386519066    537846559382408604     18891863365740396       528423132128308 
 

Figure 3.1.8: Raw time-dependent code machine event data. 

 
Machine Event (136628PEs) Phase 1 Phase 2 

Instructions Retired 1.728558509840934e+17 537846559382408604 

Floating Point Ops     147028670495  18891863365740396 

Time (s)   362.958407 1386.519066 

   Table 3.1.11: Performance results of Q4 238U benchmark time-dependent problem.  

 

Machine 
Data 

Solver Time Dependent Total 

Instructions 1.372766311947462e+19 7.10702410366502e+17 1.443836552984112e+19 

Floating 

Point Ops 

9.417338269779139e+17 1.889201039441089e+16 9.606258373723249e+17 

Wall Time 

(s) 

18393.181 2031.541   20424.722 
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CPU 

$(hours) 

1112787.4505 77101.495485555556 1189888.945985555556 

PEs 217800 136628  
Table 3.1.12: Aggregated performance results of the Q4 238U solver and time-dependent benchmark runs.  

 

 Table 3.1.13 displays the same set of selected observable data as in Q2 that was either computed 
or input by the nuclear solver, or subsequently computed by the time-dependent nuclear code and output 

after the last timestep in the second Q2 benchmark run. There is a small discrepancy in pairing because in 

the solver we renormalize the pairing with the initial potentials, while in the first time step of the time 

dependent code we renormalize with the new potentials. If the ground state solutions were perfectly 
converged, then the effect would be nullified – reduced to machine precision numerical error. Also, there 

is a small current in the time dependent system that is not present in the static code. The error in the 

coulomb energy comes from the fact that in the static code we use the correct number of protons, 92.0 , to 
calculate Coulomb, but in the time-dependent code the number, 92.02266357, computed from the density 

is used. To correct the difference simply multiply the time-dependent code result by 92/92.02266357. 

 

 
Observable  Nuclear Solver Nuclear Time Evolver 

E_tot -1737.68175351 -1737.439398333015 

E_kin 4429.134164 4429.134164 

Laplacian(Rho) 341.54 341.542143 

Rho * Tau 1500.276387 1500.276387 

Gamma 16244.888350 16244.888350 

Spin orbit -97.826035 -97.826035 

Coulomb 984.727855 984.970436 

J (current) 0.0000000… -0.000441 

Neutron pairing (n-p) -2.781041295199195 (-2.781745279856377,  

-1.4717138513362090E-021) 

Proton pairing (p-p) -6.9377623480194758E-002 (-6.8458565020630524E-002, 
1.2030492640979142E-021) 

Proton particle number 92 92.02266357252937 

Neutron particle 

number 

146 146.0462954802713 

A = Z + N 238 238.0689590528006 

Table 3.1.13: Selected observable data computed (or input) by the nuclear solver or computed by the time-

dependent nuclear code and reported after the last timestep in theQ4 benchmark run. 

 

3.1.8 SLDA Summary of Results  

 

Comparison of Q2 and Q4 Solvers 

 
PEs       = 2.9541015625 ( 217800 / 73,728 ) 
TIME      = 2.813047968968719 ( 18393.181 / 6538.523766 ) 
INS       = 7.601137780102748 (1.372766311947462e+19/1.806001090443207e+18) 
FP_OP     = 17.575445023312077 (9.417338269779136e+17/5.358236026051104e+16) 
QPWFs           = 8.324762368998294 ( 136626 / 16412 ) 
CMPLX / WF      = 1.6 (4×40×40×64 / 4×40×40×40) 
TIME IO(wr) = 0.180527320357703 (245.194223/1358.21117) (ref. Table 3.1.6) 
BYTES IO(wr) = 13.31961979039727 (4×40×40×64×136626×16 / 4×40×40×40×16412×16) 
 

Figure 3.1.9: Ratios used in comparison of Q2 and Q4 solver performance. 
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Here we provide a scaling analysis of the performance of the Q2 and Q4 codes to generate ground 

state solutions for 198W (Q2) and 238U (Q4). In weak scaling we define the scaling factor to be K = 
(T(Q4)/T(Q2)) × (PE(Q4)/PE(Q2)) := 8.310029400517944. We can then compare the measure of work 

executed completing the Q2 and Q4 codes – essentially the number of floating point operations executed, 

the number of instructions retired, and the number of bytes of useful data stored to disk for the time-
dependent code. The ratio of retired instructions is INS(Q4)/INS(Q2) = 7.601137780102748 

(1.372766311947462E19/1.806001090443207e+18) thus achieving 91.4694% of weak scaling relative to 

the Q2 problem. Similarly, the ratio of executed floating point operations is FP_OP(Q4)/FP_OP(Q2) = 
17.575445023312077 (9.417338269779136e17/5.358236026051104e16) –achieving 211.4967% of weak 

scaling for floating point operations relative to the Q2 problem ( 111,150,055 FP / s / PE in Q2 vs 

235,078,792 FP / s / PE in Q4). For the amount of solution data written we find BYT(Q4)/BYT(Q2) = 

13.31961979039727 (4×40×40×64×136626×16 / 4×40×40×40×16412×16) which is 160.2837% of the 

number of BYTEs in the solution set from Q2. This number should come as no surprise because it 

basically scales with the lattice dimensions which we see have the ratio 1.6X = 40×40×64 / 40×40×40 

between Q4 and Q2. We note also that lost in the interpretation of instructions retired are two very 

significant enhancements we made to the solver since Q2. First, instead of solving smaller diagonal sub-

blocks as in Q2, in Q4 the algorithm was redesigned to diagonalize the entire BdG matrix each self-
consistent step in both the proton and neutron communicators at the same time. The Q4 matrix 

diagonalized has dimension N = 409,600. The complexity of the direct factorizations operation scales as 

O(N3) and so we expect an increase in floating point work executed during the diagonalizations to be ~ 
1.63 = 4.096. This algorithm is extremely rich in L3 BLAS and as such a single instruction can execute 

multiple floating point computations. Looking at the number of instructions per floating point operation in 

Q2 we find 33.705142544349398 INS / FP_OP. However, in Q4 we measure 14.577009688106458 INS / 

FP_OP (2.312212399217227X). This change in complexity of the diagonalization accounts only for part 
of the larger Q4 floating point count. The remaining difference is due largely to the remainder of the self-

consistent step when the computation of potentials and densities are formed by operations on a larger set 

of vectors than in Q2 and an increased complexity per vector operation. Second, for network operations 
such as for inter-process communication and I/O, the amount of data transferred per instruction is lost in 

the raw measurement of hardware events on the chip. The rate of conducting I/O was addressed head-on 

in this GPRA-PMM enhancement campaign resulting in a new parallel Lustre write routine that back 
transforms the block cyclically decomposed solutions into wavefunctions and writes them to disk in 

parallel. Using Table 3.1.6 and Table 3.1.10 we can compare the rate of conducting the writes. In Q2 this 

number was measured as 47.2013 MBps. The Q4 assembly and write routine achieved the write rate of 

3482.5963 MBps. Comparing the two rates we note that the Q4 I/O routine is nearly 75X faster than the 
Q2 solver I/O write routine. The last significant comment is to note that in Q2 the solver utilized 32.87% 

of the entire machine whereas in Q4 we exercised 97.12% of the total system.  
 

Comparison of Q2 and Q4 Time-Dependent Codes 

 
PEs             = 8.323869867186548 ( 136628 / 16414 ) 
Time            = 0.974629425161743 (2031.541/ 2084.424036) 
INS             = 5.687421396767019 (7.10702410366502e+17/ 1.249603925551387e+17) 
FP              = 11.781663538842758 (1.889201039441089e+16/1603509583525803) 
QPWFs           = 8.324762368998294 ( 136626 / 16412 ) 
CMPLX / WF      = 1.6 (4x40x40x64 / 4x40x40x40) 
Time IO(rd)     = 0.322370532986372 (362.958407/1125.904417) 
BYTES IO(rd)    = 13.31961979039727 (4x40x40x64x136626x16 / 4x40x40x40x16412x16) 
 

Figure 3.1.10: Ratios used in comparison of Q2 and Q4 time-dependent code performance. 

 

Here we provide a scaling analysis of the performance of the Q2 and Q4 codes to use the ground state 

wave functions computed by the solvers in Q2 and Q4 to time evolve 198W (Q2) and 238U (Q4) for 200 
time steps. We define the weak scaling factor to be K = (T(Q4)/T(Q2))*(PE(Q4)/PE(Q2)) := 
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8.112688503777179. We again compare the measure of work executed completing the Q2 and Q4 time 

dependent problems –the number of floating point operations executed, the number of instructions retired, 
and the rate of reading useful data from disk and distributing it over the MPI proceses. The ratio of retired 

instructions is INS(Q4)/INS(Q2) = 5.687421396767019 thus achieving 70.1052% of weak scaling 

relative to the Q2 problem. The ratio of executed floating point operations is FP_OP(Q4)/FP_OP(Q2) = 

11.781663538842758 (1.889201039441089e+16/1603509583525803) –achieving 145.2251% of weak 
scaling for floating point operations relative to the Q2 problem. The floating point performance in the 

time loop remained essentially (98%) constant. The number of degrees of freedom for the problem was 

13.31961979039727X more complex in Q4 versus Q2. Similarly, the amount of solution data read and 
distributed is the same as the amount written such that BYT(Q4) / BYT(Q2) = 13.31961979039727 

(4×40×40×64×136626×16 / 4×40×40×40×16412×16). Using Table 3.1.7 and Table 3.1.11 we can 

compare the rate of conducting the read, distribute, and intialization in the time dependent codes. 
Assuming most of the time is spent in I/O we approximate that in Q2 this number was 56.9403 MBps. In 

Q4, for the same phase of computing and assumptions, we measure 2352.6456 MBps. Comparing the two 

rates we note that the Q4 algorithm for this I/O-distribute-initialize phase is ~ 41.32 times faster than the 
Q2 equivalent routine. Thus, it is largely because the I/O is so much faster that the Q4 time dependent 

code achieves a hyper-weak scaling trend. We note, however, that time to compute a time step is the 

essential feature. We would expect that if we ran the Q2 routine on the Q4 problem that the wall time per 
timestep in the case that we map one wave function to one MPI process would be at least 1.6X larger. 

That is we predict that the Q2 code would execute at the rate of (time / ts (Q2)) × 1.6 := 7.668156952 s/ts. 

However, the enhanced Q4 algorithm executes the Q4 problem at the rate of 6.93259533 s/ts. Thus, the 
Q4 time stepping algorithm outperforms the Q2 time stepping algorithm achieving a hyper-weak scaling 

result, 110.61% of the expected scaled value when compared to the Q2 performance. The Q2 time 

dependent code executed on ~ 7.32% of the entire system, whereas the Q4 time dependent code executed 
on ~ 61% of the system. 
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3.2 POP 

3.2.1 Introduction 

The Parallel Ocean Program (POP) is an ocean general circulation model used for ocean and climate 

studies.  It was written in the early 1990s for the Connection Machine by Smith, Dukowicz, and Malone 

[1], derived from previous models by Semtner [7] and Bryan [8].  In 2001, POP was officially adopted as 

the ocean component of the Community Climate System Model (CCSM) and the model is released to the 
public both as a standalone code through Los Alamos National Laboratory (LANL) and as part of the 

CCSM through the National Center for Atmospheric Research (NCAR).  The model has continued to 

evolve in its numerical algorithms, computational implementation and physical parameterizations with 
developments from LANL, NCAR, and a broad external developer and user community.  In more recent 

versions, ocean ecosystem models and biogeochemical processes have been added to the physical model 

of the ocean. POP remains one of the primary ocean models in use for global climate and ocean research. 
The last public release of the ocean-only model was POP 2.0.1 in January 2004. Updated versions have 

been included in the 2004 release of CCSM 3.0 and the 2010 release of CCSM 4. 

 

3.2.2 Background and Motivation 

The POP model is used for both climate change research and oceanographic research and thus has 

two broad modes of operation.  For climate change research, POP is coupled to atmosphere, land and sea-
ice models for a complete simulation of the Earth system. Because climate change simulations must be 

integrated for centuries, these simulations are at a relatively coarse resolution (1 degree or roughly 100 

km).  In addition, some of these simulations include many additional tracers and reactions to simulate the 
response of ocean ecosystems and biogeochemical feedbacks, especially for the global carbon and sulfur 

cycles.  The computational focus of these simulations is achieving the maximum throughput at coarse 

resolution, a low resolution that does not provide enough degrees of freedom to scale the model to large 

processor counts. 
The use of POP for oceanographic studies has focused on the impact of mesoscale eddies on the 

global circulation.  Eddies are typically tens of kilometers in size, so these simulations have been run at 

resolutions of 0.1 degrees (roughly 10 km).  Because of the large workload and smaller timesteps at such 
resolutions, these simulations have typically been run for only decades of simulation time. However, the 

ocean simulations at this resolution are far more realistic than the coarse resolution climate simulations. 

Computational capabilities have now reached the point where these two efforts are merging and there 

is a funded effort to run a coupled climate model at very high resolutions.  An eddy-resolving ocean at 
roughly 10 km resolution will be coupled to an atmospheric model at roughly 25 km resolution.  Each 

component of this model is more accurate and has shown greater realism, so the coupling of these models 

is expected to provide a much better simulation of the Earth’s climate and more accurate projections of 
future climate change. 

3.2.3 Capability Overview 

A complete description of the POP model is described in the POP Reference Manual [9, 10].  The 

model solves the full three-dimensional Navier-Stokes equations of fluid motion under the hydrostatic 

and incompressible approximations.  Temperature and salinity are transported and a nonlinear equation of 

state is used to provide density and pressure as a function of local temperature and salinity of ocean water.  
Several advanced mixing parameterizations are provided to simulate subgrid-scale mixing processes in 

both the horizontal and vertical directions.  A wide variety of output is available, including scalar 

diagnostics, snapshots of many fields, time-averages of many fields, floats, drifters and transports across 
various straits. 
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POP utilizes a finite-difference discretization of most spatial operators.  Most of these are second-

order centered-in-space, although a third-order upwinding scheme and some limiters are available for the 
advection terms and for enforcing positive-definite transport.  The model is integrated in time using a 

time-split algorithm.  Most of the three-dimensional vertically varying (baroclinic) terms are advanced in 

time using a fully explicit second-order centered leapfrog scheme.  However, the fastest mode of the 

system is a vertically uniform (barotropic) gravity wave that is advanced implicitly using a free-surface 
formulation that solves for the surface pressure.  A preconditioned conjugate gradient solver is used for 

this mode. 

 
Figure 3.2.1: A tripole grid in which the geographic pole has been displaced into two continents. 

 

The equations are solved on the surface of the Earth.  POP supports generalized coordinates and a 

variety of different horizontal grids.  For global problems, we avoid grid convergence near the geometric 

poles by displacing those poles into land points using either displaced-pole grids [11] or tripole grids [12] 
(see Figure 3.2.1).  All of these grids are logically rectangular, except at domain boundaries or tripole 

branch cuts. The vertical grid is an Eulerian depth coordinate with variable resolution that uses higher 

resolution in the surface layers to resolve the ocean mixed layer.  Realistic topography is used with partial 
bottom cells to provide a better resolution of steep topography; no-slip conditions are imposed at land 

boundaries. 

Ocean simulations are forced at the surface by atmospheric fields or fluxes, including wind stress, 
heat and water fluxes.  These are either computed from climatological data sets for ocean-only simulation, 

or passed to POP from the CCSM flux coupler in the case of fully coupled simulations.  For regional 

simulations, sponge layers are used at open lateral boundaries and a varying restoring to ocean 

climatology is imposed. 
The parallel implementation of the model follows a domain decomposition approach.  The horizontal 

domain is subdivided into Cartesian blocks.  The size of the blocks can be made arbitrarily large or small 

to optimize for performance.  Blocks consisting entirely of land points are eliminated, and the remaining 
blocks are distributed among nodes using either a Cartesian distribution or one of two methods that 

provide a load-balanced distribution.  Multiple blocks can be distributed per node to provide opportunities 

for a hybrid threaded/message-passing model, with threading used across the multiple blocks assigned to 

a node. Small blocks generally lead to better cache performance, more land elimination, and better load 
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balancing.  However a point of diminishing returns is reached due to increased communication 

requirements for the high surface-to-volume ratio.  Large blocks can be used if large vector lengths are 
required (e.g., on machine architectures like that of the Earth Simulator).  The vertical direction is not 

decomposed, so vertical columns are always retained locally.  A hybrid OpenMP model was implemented 

for the 2.0.1 release, but lack of use in previous architectures has left this implementation broken and 

untested.  That will be one focus of this GPRA-PMM effort. 

3.2.4 Science Driver for Metric Problem 

As mentioned above, high-resolution ocean simulations have shown a dramatic increase in realism 
due to the resolution of mesoscale eddies [13].  Improvements include better representation of western 

boundary currents like the Gulf Stream and frontal systems like the Azores front.  Resolving eddies is 

also important for the dynamics of the Southern oceans and for simulating the eddy pumping of nutrients 
in biogeochemical simulations.  The near-surface temperature from an eddy-resolving simulation is 

shown in Figure 3.2.2. 

  
Figure 3.2.2: Temperature at 15 m depth from a global 0.1-degree simulation using POP. 

 
Until recently, we have been able to afford to perform such high-resolution simulations at the scale of 

only a few decades and for the ocean only.  We are now in the process of developing a fully coupled, 

high-resolution configuration of the CCSM using the eddy-resolving POP model coupled to a 25 km 

resolution atmosphere model.  This model will be run for century-scale climate change simulations.  For 
these simulations, a throughput of more than one simulated year per CPU day is required for the fully 

coupled system.  In addition, because the ocean must share memory with other components, careful 

attention to memory allocation is required.  Finally, in coupled climate simulations, we will need to 
output a more complete set of diagnostic fields and to evaluate extreme events, will need to output data 

more frequently in time, at least for specific time slices. 

3.2.5 The Model and Algorithm 

For this effort, we will use the latest LANL POP repository version (current version at 1 Feb 2010). 

We will configure POP in an ocean-only mode that is effectively identical to the anticipated coupled 

simulation and similar to previous ocean-only simulations.  The model will use a tripole 0.1-degree global 
grid (3600×2400×42 grid points).  Tracer advection is performed using a centered spatial discretization 

and biharmonic lateral mixing is chosen for both tracers and momentum.  Vertical mixing is performed 
using the k-profile parameterization (KPP).  The model will be forced at the surface using monthly 

normal-year forcing.  The simulation will proceed for 3 simulated days with a time step of 10 minutes and 

will output many fields each simulated day to benchmark a high-frequency output time slice. 
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3.2.6 Q2 Baseline Problem Results 

For the initial baseline, we performed the benchmark problem described above for three different 

machine configurations.  The configurations differed only in core count, with 4800, 9600 and 14400 PEs 
used for each simulation.  The horizontal subdomain block sizes used in each are 30×60, 30×30, and 

30×20, respectively.  A standard Cartesian distribution of blocks is used with one block per core; load 

balancing distributions at these block sizes are not as efficient due to the high surface to volume ratio for 

halo updates. The programming model was pure MPI for each (the original threading implementation was 

not functional for the initial baseline and will be one focus of performance improvement in this study). 

The compiler and environment variables are shown in an appendix.  
  Table 3.2.1 shows wall time results of the Q2 POP code on the fixed benchmark problem. 

The baroclinic portion of the code is computationally intensive and fully explicit in time, so it scales well 

between 4800 and 9600 cores.  At 14400 cores, the subdomain size is only 600 points (20×30 Cartesian 

patch) and the work per core is becoming very small.  The barotropic solver is a two-dimensional elliptic 

solve using a preconditioned conjugate gradient algorithm, and the compute time is dominated by either 

the global reductions or the implicit barrier that those reductions impose on the algorithm.  The matrix 
operator is only a two-dimensional, nine-point stencil, and does not generate enough computation to 

overlap communications.  This is a known performance issue in POP but will not be the focus of this 

enhancement exercise.   
Previous production simulations of this ocean-only configuration have typically output only at 

monthly intervals, as that has been adequate for the ocean timescales.  For this benchmark, we are 

performing more frequent output, which will be required for some of the planned fully coupled 
simulations.  It is clear that the current parallel I/O implementation is not adequate for this application.  

The current I/O implementation is only parallel in the number of vertical levels, and much of the frequent 

output required will be for two-dimensional surface fields and no parallelism is available in the current 

I/O library.   We will be implementing new parallel I/O libraries to improve this performance as part of 
this year’s GPRA-PMM activities. As such, we will focus on a strong scaling result between the 4800 PE 

and 9600 PE cases. The machine events and timing results for these two cases are summarized in Tables 

3.2.2 and 3.2.3 for the Q2 benchmark problem. 
 

PEs 4800 9600 14400 
Wall Time (s) 957.842493 1011.535276 1450.240505  

  Table 3.2.1: Q2 POP wall times for the benchmark at three processor core counts.  

 
4800 PEs, Q2 Time(s) INS FP_OP 

Barotropic 220.285649 3362619394734242 10914798749862 

Baroclinic 84.623336 638046552543018 123489441332158 

T_avg 554.416994 10459543609613288 22070416032 

Movie 98.516514 1838543581529579 15638400 

TOTALs 957.842493 1.629875313842013e+16 134,426,326,136,452 

    Table 3.2.2: Q2 POP machine events, 4800 PE benchmark.   

 

9600 PEs, Q2 Time(s) INS FP_OP 

Barotropic 161.178819 5237555077073871 11696471278395 

Baroclinic 48.676842 741726106983124 133265275114487 

T_avg 680.398445 26639716932532043 24868717776 

Movie 121.281170 4598600128921236 31276800 

TOTALs 1011.535276 3.721759824551027e+16 144,986,646,387,458 

Table 3.2.3: Q2 POP machine events, 9600 PE benchmark. 
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3.2.7 Q4 Code Improvements 

Because POP users regard the wall time to execute a problem to be the most significant measure of 

productivity, the initial plan was to embark on a strong scaling pursuit to add hardware to minimize the 
wall time spent for computing the benchmark problem defined in Q2. However, upon inspection of the 

code we realized that the I/O phases of the code might be re-written to achieve a significant performance 

gain in efficiency. We consider first focusing on the 4800 PE Q2 benchmark where 652.933508s of the 

total run time of 957.842493s, or 68.1671% of the walltime, was spent doing I/O. The simulation 
executed 3 simulated days. Each day observable data and movie related data were written to disk. The 

observables were formed in 8 3D fields and 19 2D fields. Each process manages a 60 × 30 × 42 fragment 

per 3D field and a 60 × 30 fragment per 2D field. The data type for all the I/O data is float. Thus, the 

volume of observable data written per day for the target problem is (8 × 4 × 30 × 60 × 42 × 4800 + 19 × 4 

× 30 × 60 × 4800) B / day = 11.4262104 GB / day, or about 35 GB for the benchmark at 1 observables 

file per day. There are 60 movies formed each day from coordinate data. The 3600 × 2400 coordinate 

movie data is decomposed over a virtual 60 × 80 rectangular process grid where each process owns a 60 × 

30 block of the global data set. The total volume of data written for movies is 60 × 4 × 60 × 30 × 4800 B / 

day = 1.931190491 GB / day or 5.793571472 GB for the entire benchmark problem.  

In Q2, the observable data for each computed day was gathered in the interior of nested loops over the 

fields and k-values to a single lead process one 4800 × 60 × 30 block at a time, then written (Fortran I/O) 

to a single open file by the gathering process. Thus, during each loop iteration, NP – 1 PEs wait while a 

single process writes to the disk a very small amount of data. In Q4, we have introduced a C routine that 

targets a single Lustre file for a parallel write. We define NIOPE processes to participate in the parallel 
write. For the benchmark problem we define 42 PEs per 3D field to be part of the I/O group so that 

NIOPEs := 8 (3D fields / day) ×  42 ( k-values / fields ) × 1 ( PE / k-value) = 336 IOPEs / day. Now, 

instead of a single process writing after each gather, the Q4 code executes a targeted gather phase where 
first the data affiliated with each k-value and field are used to identify the process ID of the gathering 

process. After gathering the data to be written into the set designated, of disjoint processes, then NP – 

NIOPEs wait one time while each IO process executes a write with offset into the Lustre file. Finally, the 
Lustre file parameters and number of processes to include in the write for the 4800 PE run were 

determined by executing an oracle code to execute a micro-kernel of the POP I/O phases. We conducted 

basically an exhaustive search over sensible combinations of NIOPEs, number of OSTs, and stripe size 
setting. For the 2D fields, one can reuse the described algorithm assuming there is only a single k-value. 

Thus, we employ a single I/O PE for each 2D field and execute the gather and write as just described in 

the case of 3D fields. We note that for the combined assembly and write of the 3D and 2D observable 

data, the Q4 algorithm is 7.595252132037274 times faster than the Q2 version for the 4800 PE problem. 
Next, for the movie files, we again introduce a set of designated, disjoint I/O processes to replace the 

single process write –in this case we assign a single I/O process per movie. We first execute a gather 

phase where the block decomposed data is sent to the process with MPI process ID equal to the movie 
index. The I/O processes then locally copy the data from the receive buffer into a write buffer thus 

restoring the global indices –transforming to a column major ordering of the coordinates in the 3600 x 

2400 spatial grid. At this point, NP – NMOVIE PEs wait while NMOVIE PEs write with offset to a single 

Lustre file. Looking at the performance numbers between Q2 and Q4, we note that the Q4 code is 
7.946443175395545 times faster on the same problem and 4800 PEs. 

As a last point, the microkernel code also included a correctness check to insure that all the index 

mappings were correct and in compliance with the POP demands.  

3.2.8 Q4 Metric Problem Results  

The enhancement described was designed to make the 4800 PE run more efficient to lead the way for 
the strong scaling result when comparing the Q2 4800 PE performance results to the Q4 9600 PE 
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performance results. The raw machine-event data for the enhanced Q4 codes on the Q2 benchmark 

problems are listed in Tables 3.2.4 and 3.2.5. 
 
4800 PEs, Q4 Time(s) INS FP_OP 

Barotropic 162.845484    2493523139608176      10918903717734        

Baroclinic 81.234007     611926226154622     123489442062604       

T_avg 72.995206    1369947333186195         22070417409          

Movie 12.397561     228560389936546            15640101           

TOTALs 329.472258 4,703,957,088,885,539 134,430,431,837,848 

Table 3.2.4: Q4 POP machine events, 4800 PEs, Q2 problem. 

 
9600 PEs, Q4 Time(s) INS FP_OP 

Barotropic  143.867992 4352776136294947  11696471278395 

Baroclinic  47.994133 755616085382567 133265275114487 

T_avg  84.648207 3180959264572214 24868719153 

Movie  13.812455 505002308418671 31278501 

TOTALs 290.322787 8,794,353,794,668,399 144,986,646,390,536 

Table 3.2.5: Q4 POP machine events, 9600 PEs, Q2 problem. 

 
 

3.2.9 Analysis 

The TIME ratio in Figure 3.2. shows that we have exceeded a factor of two in speedup comparing the 

Q2 and Q4 codes run on the same problem for the 4800PE case. The ratio FP_OP is very close to one, 

meaning that the number of floating point operations remained essentially the same; this makes sense 
because the changes in the code were purely in the I/O implementation. We have enhanced the efficiency 

of the code by more than a factor of two!  While the new I/O algorithms were written for the Q2 problem 

instance and 4800 PEs, it is easy to generalize them to most POP problems with little additional work. For 
lack of resources, we stopped once the speed-up required to satisfy the GPRA-PMM metric was reached. 

We derive the following ratios from the raw data in Tables 3.2.2 and 3.2.4 as part of the analysis of POP’s 

performance. 

 
PES     : 1 
TIME    : 0.343973315454068 (329472258 / 957842493) 
INS     : 0.288608401448646 (4703957088885539 / 1.629875313842013e+16) 
FP_OP   : 1.000030542390869 ( 134430431837848 /     134426326136452  ) 
 

Figure 3.2.5: Ratios derived from POP raw data for performance analysis of 4800 PE runs in Q2 and Q4. 

 
As described in the previous section, the primary performance and scalability bottleneck in the chosen 

benchmark configuration was the I/O implementation.  Therefore, the focus of the GPRA-PMM effort 

was a new parallel I/O implementation that could use the I/O subsystem more efficiently. The strong 

scaling argument uses the results from Tables 3.2.5 and 3.2.2. Figure 3.2.6 shows the results of the strong 
scaling comparison between the Q4 enhanced code executed on 9600 PEs versus the Q2 POP code on 

4800 PEs.  

 
 

 

 
PES     : 2 
TIME    : 0.3031007593855 (290.322787 / 957.842493) 
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INS     : 0.539572181993355 (8794353794668399 / 1.629875313842013e+16) 
FP_OP   : 1.078558423469556 (144986646390536 / 134426326136452) 
 

Figure 3.2.6: Ratios derived from POP raw data for performance analysis of Q2 4800 PE and Q4 9600 PE 

runs. 

 

3.2.10 Summary and Conclusions 

For upcoming high-resolution production simulations of the climate system at high resolution, we 

needed to improve the throughput of the POP ocean component.  The primary bottleneck for this model 

was the parallel I/O implementation that had limited parallelism (across vertical levels only) for 3D fields, 
and no parallelism for 2D fields.  For climate statistics and climate extremes we anticipated very frequent 

output of many diagnostic fields and the current implementation was not only limiting performance, but 

also effectively preventing such frequent output.  We implemented a far more efficient I/O scheme that 
was developed by K. Roche, which significantly improved our model throughput for this high I/O 

configuration.  We met the metric goal of a factor of two increase in model throughput for the POP ocean 

model. To wit, on doubling the number of PEs on the Q2 baseline problem, the run time was 

3.299232908645226 faster than the Q2 run time. 
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3.3 LS3DF 

3.3.1 Introduction 

LS3DF [2, 3] is a code for ab initio density functional theory (DFT) calculations that scales linearly. 

It is designed to study nanosystems containing a few thousand to hundreds of thousands of atoms. This 

relatively new code, developed by Dr. Lin-Wang Wang’s group at Lawrence Berkeley National 

Laboratory, is based on a new divide-and-conquer charge density patching algorithm that cancels out the 
artificial boundary effects due to subdivision. As a result of this patching scheme, the results of LS3DF 

computations can be as accurate as conventional direct DFT calculation methods, while running 

thousands of times faster on systems of tens of thousands of atoms [14]. LS3DF won a special Gordon 
Bell prize award in 2008 for algorithm developments [14]. It has been run successfully on the full Jaguar 

Cray XT5 machine at NCCS with 150,000 processors in November 2008, attaining 33% of the machine’s 

theoretical peak speed. It has also been run successfully on the full Intrepid IBM BlueGene/P machine at 
ALCF with 164,000 processors at 40% of the theoretical peak speed. It has been used in two DOE 

INCITE projects to study the electronic structure of nanosystems, and to simulate the critical components 

of nano solar cells. In typical production LS3DF runs, the number of processors used ranges from 8000 

processors to 50,000 processors. The LS3DF code has been ported to many platforms, including Cray 
XT5, IBM BlueGene/P and IBM SP machines. The kernel of LS3DF is based on the PEtot planewave 

DFT code [15] developed in Dr. Wang’s group, which by itself can be used to calculate systems with up 

to a thousand atoms. The current version of the LS3DF code performs only self-consistent DFT 
calculations without moving the atoms. An upgraded version of the code with the atomic relaxation 

capability is under development. 

3.3.2 Background and Motivation 

As computational power has grown to petascale, the optimal algorithms for doing simulations of a 

given problem, as well as the scale of the physical problems that can be simulated, have both changed. 

Nanosystems often contain hundreds of thousands of atoms, and are beyond the scope of traditional ab 

initio DFT computational methods. However, many problems must be simulated from first principles, 

e.g., the total energy, the dipole moment, the band alignment, and the atomic positions. The main reason 

these large systems are out of reach when using traditional DFT methods is the cubic scaling of DFT 
methods with the system size [16]. This has motivated the development of linear scaling methods. Linear 

scaling methods are possible, especially for semiconductor systems, due to the locality of the quantum 

mechanical properties of the material (the nearsightedness principle [17]). On the other hand, the long-

range portion of the interaction (the electrostatic interaction) is classical, and can be calculated quickly 
based on the charge density.  

In the past fifteen years, many linear scaling methods have been developed. There are three main 

approaches: (1) truncated localized orbital methods [18]; (2) truncated density matrix methods [19]; and 
(3) divide-and-conquer methods [20]. The localized orbital methods sometimes suffer from an energy 

local minimum problem, although some schemes have been proposed to overcome this [21]. The 

truncated density matrix method often uses a local basis set, and is popular in quantum chemistry 
calculations.  

The LS3DF method belongs in the divide-and-conquer category. The advantage of the divide-and-

conquer method is its straightforward implementation without worrying about numerical instability, and 

its natural suitability to large-scale parallelization. A disadvantage is the relatively large prefactor in the 
linear scaling coefficient due to the multiple calculations of a same spatial point. Nevertheless, numerical 

tests show that the crossover between the linear scaling divide-and-conquer method and the O(N
3
) scaling 

traditional DFT method is at about 500 atoms, which is essentially the same crossover system size as 
other linear scaling methods.  

In the divide-and-conquer approach, a large system is divided into many fragments, and each 

fragment can be calculated by a small group of computer processors independently. The results for 
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different fragments are gathered together to generate the results of the original system. The independent 

execution of different fragments makes the computation amenable to large-scale parallelization. Indeed, 
the LS3DF can scale to hundreds of thousands of processors. Similarly, Professors Vashishta and 

Nakano’s group at the University of Southern California has implemented another version of the divide-

and-conquer scheme that can also scale to hundreds of thousands of processors [22]. In the early divide-

and-conquer scheme proposed by Professor W.T. Yang [20], only a central part of a fragment is used in 
patching the system to generate the result of the original global system. Spatial partition functions are 

used in that task. Unfortunately, the use of partition functions has caused some technical problems, 

including the non-unique treatment of the kinetic energy, the metallic-like treatment for fragments state 
occupation, and the nonexistence of a variational formalism for the total energy. All these issues make the 

result not very accurate compared with the direct DFT results. LS3DF has overcome these problems with 

a spatial divide and patching scheme. In this scheme, fragments of different sizes are used, both positive 
and negative, and the fragments are patched together in such a way that the artificial boundary effects 

caused by the subdivision will be cancelled out between different fragments. Because no partition 

function is used, a variational formula exists for the total energy and the fragment Kohn-Sham equation. 

The LS3DF method is also similar to the fragment molecular orbital (FMO) method [23]. However, FMO 
is designed for organic chain molecules, and cuts the system only along the chains and uses fragment 

dimmers to correct the interface energies. It thus cannot be used for systems like inorganic nanocrystals. 

In addition, the FMO cancels only the division boundary effects between two fragments (thus it does not 
cancel out the effects of the edges and corners of a 3D fragment), while LS3DF cancels out all artificial 

boundary effects. In the LS3DF method, the division of the system into fragments is done based on 

atomic spatial positions. It is thus ideal for 3D systems like the nanocrystal, but also suitable for organic 
systems. 

3.3.3 Capability Overview 

LS3DF performs DFT calculations on systems with thousands or hundreds of thousands of atoms. 
With hundreds of thousands of computer processors, it can finish a self-consistent calculation within an 

hour. The kernel of the LS3DF for the fragment calculations is based on the standard planewave 

pseudopotential codes. It uses the norm conserving pseudopotentials. The total energy error compared 
with the direct DFT calculation is about 1 meV per atom. The charge density difference is less than 0.1% 

[2, 3]. For a converged calculation, it provides the total charge density and total potential, but no global 

eigenfunctions and eigenstates. To calculate eigenfunctions and eigenstates, one can take the potential 
from the LS3DF method and perform a folded spectrum method (FSM) [24] using the PEscan code [25]. 

The Poisson equation is solved based on the global charge density. It can be solved using periodic 

boundary conditions or open boundary conditions. The open boundary condition is useful for calculations 

involving isolated systems like a quantum dot. Self-consistency is achieved iteratively via potential 
mixing schemes. Pulay and Kerker potential mixings are used. The LS3DF code divides the global system 

into many fragments. The fragment division is based on a real space grid, which is provided by the user. 

The grid cell corresponds to the smallest fragment size: the larger the fragment size, the more accurate the 
results. For good accuracy, the smallest fragment in a typical computation corresponds to roughly eight 

atom cells. LS3DF can be used to calculate the atomic force based on Hellmann Feynman theory. The 

LS3DF-calculated forces differ from the results of the direct DFT method by only 10-5 a.u.  

Currently, the LS3DF code cannot be used to relax the atomic position. A newer version of the code 
allowing atomic relaxation is under development. The current version of the LS3DF code allows the 

calculation of the semiconductor or insulator systems where a band gap exists between the occupied states 

and unoccupied states. Tests are underway to show whether the LS3DF method can be used for metallic 
systems, in which the electron occupation for each fragment is determined by a global Fermi level. 
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Figure 3.3.1: Program flow chart for conventional LDA method (left) and LS3DF (right). 

 

The LS3DF code is based on the planewave DFT PEtot code [15].  Flow charts comparing the 
original LDA code and the LS3DF code are shown in Figure 3.3.1. The LS3DF code consists of several 

components: PEtot_F, which divides the number of processors into processor groups, and the calculation 

of the fragment wavefunctions �F,I of each group for a given fragment potential VF(r).  It also calculates 

the fragment charge density �F(r) from the wavefunction �F,I; Gen_dens patches together the fragment 

charge densities �F(r) to generate the total charge density �tot(r) of the whole system.  The Poisson 

generates the LDA total potential Vtot(r) from the total charge density �tot(r).  This step solves the 

Poisson equation for the whole system using a global FFT.  It also uses the Pulay scheme to mix the 

resulting LDA potential that is used in the next iteration.  Finally, Gen_VF generates the fragment 
potential VF(r) from the input total potential Vtot(r).  

 

 
Figure 3.3.2: Scalability of LS3DF vs. LDA. 
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Figure 3.3.3: Parallelization of problem domain. 

 

The biggest advantage of the LS3DF method is its linear scaling with respect to both the size of the 

physical system and the number of computer processors. The linear scaling of the computational cost for 

LS3DF method to the size of the system is illustrated in Figure 3.3.2; LS3DF calculations become 
cheaper than direct DFT calculations when the size of the system exceeds about 500 atoms.  

 

 
Figure 3.3.4: Weak scaling of LS3DF on three leadership computing resources. 

 

A schematic of the LS3DF parallelization scheme is shown in Figure 3.3.3, where computer 
processors are divided into different groups, while each group calculates upon a few fragments. The 

assignment of the fragment to the processor groups are done statically at the beginning of the calculation 

based on the estimated computing time for each fragment to reach a load balance.  Finally, a weak scaling 

study of the code on a bulk semiconductor alloy ZnTe:O system is shown in Figure 3.3.4. We see that it 
scales linearly to the full machine sizes available at the time of the test.  

3.3.4 Science Driver for Metric Problem 

Due to possible dipole moments of the nanocrystals, there could be large internal electric fields in 

such systems. The internal electric field can significantly change the electronic structure, the electron 

wave function localization, the exciton binding energy and dissociation, and the carrier dynamics. All 
these are critically important for solar cell performance [26]. Despite more than a decade of study [27-29], 

the internal electric field problem in a composite nanocrystal and its consequence on the electron wave 

functions are still poorly understood. Experimentally, this is due in part to the lack of adequate 

experimental probes that are able to make direct measurements of the electric field inside a nanocrystal. 
The situation is also complicated by the sensitivity of the internal electric field to the nano environment, 

including surface and interface dipoles, piezoelectric effects, bulk dipole moment, charged dopants, 

surface trapped charges, compensation charge, and surface ligands.  For example, the piezoelectric and 



 

50 

dipole effects are more complicated in a nanostructure than in bulk superlattices due to the complicated 

geometries, and a single dopant or surface charge can completely change the outlook of the internal 
electric field. The band alignment problem, effects of surface passivation, and the change of dielectric 

screening have also made the internal electric field problem a challenge to model and simulate. Although 

the traditional continuous models for piezoelectricity have been used for large epitaxial embedded 

quantum dots, the use of such models for smaller colloidal nanosystems is not established. This is 
particularly true given the recently found importance of higher order piezoelectric effects [30]. All these 

make it necessary to use ab initio DFT methods to study the electric field effect microscopically at the 

atomic level. Unfortunately, the relevant nanosystems often contain a few thousand to tens of thousands 
of atoms, which are beyond the capability of conventional DFT methods. This has prevented the use of 

the modern ab initio methods for studying the electric field problem in nanosystems. However, the 

situation has changed with the development of LS3DF method: these problems are now computationally 
feasible. We have thus applied the LS3DF method to study this longstanding nanoscience problem. 

 

 
Figure 3.3.5: The benchmark ZnO nanorod and some of its fragments. 

 

For our benchmark problem, we have chosen a ZnO nanorod (Figure 3.3.5). This is a nanorod 

modeled with realistic surface passivation. The ZnO rod is chosen due to its widespread use in many 

different applications, excellent experimental sample quality, and a clear surface passivation model. ZnO 

has been used in many nano solar cell designs, and is a widely used semiconductor material. Despite its 
importance, little is known about the total dipole moment and internal electric field of a ZnO nanorod. For 

bulk wurtzite structure, there is a small bulk dipole moment per unit cell ZnO. There have been many 

experimental and theoretical studies of the dipole moment of the ZnO polar surface, and the resulting 

surface passivation and compensation charges. However, there is no such study for nanosystems. Surface 
passivation often plays an important role in determining nanocrystal properties. Unfortunately, for many 

nanocrystals, we know very little about their surface passivations. For ZnO nanorod, the side surface is 

self-healed without organic ligands. The surface atomic relaxation pattern is well understood. The Zn and 
O atoms on the (10-10) and (1120) surfaces form a dimer structure with Zn moving inward and O moving 

outward. The resulting surface states are slightly above the bulk band gap. For the bottom (O-terminated) 

and top (Zn-terminated) dipole surfaces, we have used H and OH group to passivate them. Previous 
studies indicate that H and OH are very efficient passivation agents, and they are also ubiquitous. The 

quantum rod atomic structure is shown in Figure 3.3.5. There are 2776 atoms in the system, with 24220 

valence electrons in the DFT calculations. Zn d-electron is included in the valence electrons. Our goal is 

to perform self-consistent calculations for this system to find the total charge density and potential of the 

system.  
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Our LS3DF computations find a large dipole moment and a very tilted potential profile. If the tilting 

is larger than the energy band gap, such potential can cause the electron to flow from one side to another. 
This is a charge self-compensation effect (much like in a bare ZnO polar surface). As a result, large tilting 

cannot happen, and it makes the study of the dipole moment effect complicated. One advantage of the 

LS3DF method is its ability to prevent such charge flow from one side to another despite a severely tilted 

potential. This is because the fragments are calculated independently, and a fragment does not see the 
whole quantum rod. As a result, the electric break down effect can be prevented. If a global Fermi energy 

is used in LS3DF, we can make it possible for the charge to flow from one side to another, but here, we 

deliberately prevent such charge flow in order to study the dipole moment and internal electric field 
effect. 

3.3.5 The Model and Algorithm 

LS3DF is based on the observation that the total energy of a system can be decomposed into 

two pieces: the quantum mechanical part (the wave function kinetic energy and the exchange 

correlation energy), and the classical electrostatic part. The electrostatic energy (Coulomb energy) 

is long range, while the quantum mechanical energy is local in nature (nearsighted). While the 
long-range Coulomb interaction can be solved efficiently by the Poisson equation even for million-

atom systems, the quantum mechanical part presents a challenge. To overcome this challenge, we 

will take advantage of quantum-mechanical locality by using a spatial decomposition divide-and-
conquer method. While there are previous methods [20, 22] based on this divide-and-conquer 

concept, they all rely on positive spatial partition functions to divide and patch the spaces. There 

are intrinsic difficulties inherent to these positive partition function techniques, especially for 
dividing the kinetic energies, and making a variational formalism. In contrast, the division-

patching method in LS3DF avoids these problems, resulting in a much more accurate algorithm 

(with accuracy essentially the same as the original full-system LDA method).   

The division of space (and hence the atoms in it) of the LS3DF method is shown in Figure 
3.3.6. For simplicity, we have illustrated this division in a two-dimensional system (rather than 

three-dimensional), but the concept is the same in any dimensionality. If the whole system is 

placed inside a box, one can first divide the box into an m1 × m2 two-dimensional grid.  Now, at 

each grid point (i, j), one can define four fragments (pieces) enumerated by their left lower corners 

(i, j).  In terms of the unit grid, the sizes of these four fragments are: 2×2, 2×1, 1×2, and 1×1.  Let 

us denote the charge density of these fragments as ρ2×2(i, j), ρ2×1(i, j), ρ1×2(i, j), and ρ1×1(i, j).  If all 

these fragment charges have been calculated (e.g., by different computer processors), then the total 

charge of the system can be summed as: ρtot = Σi,j [ρ2×2(i, j)-ρ2×1(i, j)-ρ1×2(i, j)+ρ1×1(i, j)].  As a 

result, all the edges and corners of the fragments in the summation will cancel out. In Figure 3.3.6, 

if we compute the area of the fragments covering each grid cell (i, j), we obtain 2×2-2×1-1×2+1=1, 

i.e., exactly the area needed to fill the entire box. On the other hand, adding up the number of 

fragment edges along the borders of the box (fragment boundary line), we have 8-6-6+4=0, and 

summing the number of corners, we have 4-4-4+4=0. Thus, the extraneous areas, edges, and 
corners all cancel out. This scheme also works in the three-dimensional system, where each grid 

cell (i, j, k) contains eight fragments with sizes (and the +/-  signs in the summation) 2×2×2(+), 

2×2×1(-), 2×1×2(-), 1×2×2(-), 2×1×1(+), 1×2×1(+),  1×1×2(+), and 1×1×1(-) respectively. 



 

52 

  
Figure 3.3.6: Schematic of LS3DF subdivision of domain space. 

 

Note that only the fragment charge densities are patched together, not the fragment wave 
functions. The global charge is needed to solve the Poisson equation of the whole system for the 

long-range Coulomb interactions. This global charge will also be used to calculate the exchange-

correlation energy under the density functional formula (e.g., the local density approximation, 
LDA). On the other hand, the fragment wave functions {ψF, i} are used only to generate the 

fragment charge density and the fragment kinetic energy (which will also be summed up using the 

same formula with positive and negative signs for fragments of different sizes). The remaining 
energy terms in the LDA energy expression will be calculated in terms of the total charge density 

ρtot(r). Since calculating {ψF, i} is the most time-consuming part, and the total computational cost is 

proportional to the number of fragments, the method scales linearly with the size of the entire 

system. It also makes the whole calculation easily parallelizable. Typically the set of processors is 
divided into many subsets, and each subset is assigned a number of fragments, over which 

computations are performed in sequence. 

The accuracy of the LS3DF method depends on the size of the fragment: the larger the size, the 
better the accuracy compared with the original direct DFT calculation. Thus, to achieve a given 

accuracy, we use a fixed fragment size. A typical 1×1×1 fragment contains 8 atoms; thus the 

largest 2×2×2 fragment contains 64 atoms. Some fragments of the ZnO quantum rod are shown in 

Figure 3.3.5. Using such fragments for the computation, the resulting LS3DF total energy differs 

from the direct whole-system DFT calculations by only a few meV per atom, which is smaller than 
many other numerical errors in a typical DFT calculation, e.g., the plane wave cutoff error, and the 

pseudopotential error. Thus, for most practical purposes, the LS3DF method can be considered 

numerically equivalent to the direct DFT method. Due to the linear scaling of the LS3DF method, 

however, it can be thousands of times faster.  
In a variational formalism like LS3DF, the total energy minimization is achieved by self-

consistent iterations, where a total system input potential is used to generate an output potential 

through the LS3DF formalism. When the input and output potential become the same, self-
consistency is reached. 

3.3.6 Q2 Baseline Problem Results 

The LS3DF calculation of the 2776 atom, 24220 valence electron ZnO nanorod shown in Figure 3.3.5 

converges after forty self-consistent field iterations. This is indicated by the exponential decay of the 

input and output potential difference as the iteration progresses, as shown in Figure 3.3.7. A 50 Ryd plane 

wave kinetic energy cutoff is used to describe the electron wave functions, and an open boundary 
condition is used to solve the global Poisson equation. This assures that there is no dipole-dipole 

interaction between image quantum rods in a periodic boundary condition. The supercell is divided into 

an m1 × m2 × m3 = 18 × 6 × 6 grid, as depicted in Figure 3.3.6. In real space, the supercell is discretized on 

a numerical grid of dimension 720 × 300 × 300. This is the FFT grid for the global Poisson solver.  
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Figure 3.3.7: Convergence of the LS3DF method for ZnO nanorod. 

 

 

 

                                                
Figure 3.3.8: Self-consistent potential along the center axis of ZnO nanorod. 

 

A large dipole moment and internal potential is found, as shown in Figure 3.3.8. Such internal electric 
fields will strongly localize the electron at one side and a hole at the other side, thus dramatically altering 

the carrier dynamics in the system. Further analysis and comparative studies with other quantum dots 

with different side surface terminations reveal that the dipole moment comes from the Zn-O dimerization 
at the quantum rod side surface. These results suggest ways to manipulate the internal electric field by 

changing the side surface passivation, e.g., via application of different organic ligands. Note that the 

tilting of the internal potential from one size of the rod to the other is about 6 Volts, which is larger than 
the ZnO band gap (3.3 eV). If such a large tilting occurs in a physical system, the occupied valence 

electron at one side will flow to the conduction band state at the other side. Thus, there will be a self-

compensation effect. Under the current mode of calculation in our LS3DF method, however, this large 

tilting is possible because we occupy each local fragment with a fixed number of electrons. This prevents 
electrons from flowing from one side to another while still allowing the dipole moment to exist. In the 

LS3DF calculation, we can also use a global Fermi energy to determine the electron occupation of 

individual fragments. If that is done, there will be charge flow from one side to the other, hence self-
compensation will occur. We observe charge compensation in the direct DFT calculation (which we 

performed upon smaller systems), and there is no algorithm to prevent charge compensation from 

occurring. The ability to prevent charge compensation in the LS3DF method provides a means to study 

the total dipole moment effect without the additional complication of the charge flow, which depends on 
other factors like the surface electronic states. A full physical picture can be obtained by comparing the 

calculated results with and without the charge compensation.  

LS3DF calculations on problems such as the ZnO nanorod consist of two stages. In the first stage, 
each fragment is calculated self-consistently by using a small box periodic boundary condition for each 

fragment. Then fragment charge densities and potentials for all the fragments are obtained. These initial 

fragment charge densities are used to generate the initial global charge density, and the initial global 
potential. For a given fragment, the global potential in the real-space domain of that fragment is 
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abstracted from the initial fragment potential to yield the fragment surface passivation potential [3]. This 

finishes the first stage of the LS3DF calculation. We performed twenty local self-consistent iterations for 
each fragment to yield the initial fragment charge density. Note that, at this stage, the self-consistent 

iteration for each fragment is performed independently without communications between fragments. An 

artificial periodic boundary condition is used over a small box on each fragment.  

 
In the second stage, the flow charge is described in Figure 3.3.1, and the fragment wave functions are 

iterated over the fragment potentials, and the updated fragment charge densities are patched to generate 

the global charge density. This global charge density is used to solve the global Poisson equation to yield 
the global potential, which is used as the input (after potential mixing) for the next iteration. Here, the 

self-consistency is done over the global charge density and the potential. The forty iterations shown in 

Figure 3.3.7 are these global self-consistent iterations.  
 

Two variables characterize the computation: Ng, the number of groups, and Nc, the number of cores 

within each group. The total number of cores equals NgNc.  In our benchmark calculations, we varied both 

parameters, one at a time. In Table 3.3.1, the total compute times (from beginning to the end) required for 
the 20 initial iterations plus the 40 global self-consistent field (SCF) iterations are shown.  

 
Ntot (core) 10,800 21,600 43,200 8,640 17,280 

Ng (group) 108 108 108 108 216 

Nc (core/group) 100 200 400 80 80 

Total time (hrs) 5.36 4.21 3.87 5.92 4.05 

Tflops/sec 19.91 26.35 20.80 17.84 26.08 

% peak 17.7% 11.7% 4.6% 19.2% 14.5% 
Table 3.3.1: Benchmarking results for varying process counts and configurations. 

 

From Table 3.3.1, one can see that the parallel scaling is far from perfect, and much worse than that 

shown in Figure 3.3.4. The main reason for this is that the scaling shown in Figure 3.3.4 is weak scaling, 
in which the system size increases with the number of groups, while here we have performed a strong 

scaling study near the point at which strong scaling for both Ng and Nc has reached its limit. Furthermore, 

a spatially homogeneous semiconductor alloy (ZnTe:O) is used for the test shown in Figure 3.3.4, which 
makes load balancing much easier and allows the use of some special fine-tuned algorithms for Gen_VF 

and Gen_dens. In the current benchmark problem, the system is inhomogeneous, consisting of the ZnO 

rod and vacuum. As a result, there is a large variation in fragment sizes. When Ng reaches 100 or 200, 
each group will have only a few fragments, with one or two large 2×2×2 fragments. This makes load 

balancing difficult. The resulting load balance problem shows up when Ng goes from 108 to 216 while Nc 

is fixed at 80. For a perfectly load balanced case, the compute time should be halved; in reality, it has 
only reduced to 68%. From Table 3.3.1, it is also apparent that the Nc has also reached its scaling limit. As 

Nc increases from 100 to 200 while Ng is kept constant, the reduction in compute time is only 20%, not the 

ideal 50%. When Nc is increased further, the compute time actually rises. Unfortunately, the program 
cannot be run with Nc much smaller than 80, due to memory constraints. In the current system, the d-

electron of the Zn atom is kept in the valence band. As a result, the largest fragment has about a thousand 

electrons. Storing all the wave functions for all the fragments in a given processor group requires 

substantial memory. The overall floating point performance is less than 20% of the theoretical limit, 
indicating room for improvement.  

Table 3.3.2 shows a breakdown of the compute times for different subroutines, and their floating-

point performance compared to the theoretical limit. The durations indicate the relative importance of 
each subroutine, while the peak percentage (efficiency) indicates the performance of each piece. For the 

SCF iterations, the value for a single, representative iteration has been reproduced (in this case, there are 

40 SCF iterations). We observed only minor fluctuations (a few percent) from one iteration to another. 

There are four subroutines in each SCF iteration, as shown in Figure 3.3.1. The most time-consuming part 
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is PEtot_F, where the fragment wave functions are calculated. This part has an efficiency of about 20%. 

Since it dominates the calculation, improving the performance of this part is vital. For the three remaining 
subroutines, the low efficiency is somewhat an artifact of their limited scalability. Only a fraction of the 

cores perform these calculations, while the remaining cores idle. In all the benchmark runs, only m1 × m2 × 

m3=648 cores are used to carry out Gen_VF and Gen_dens subroutines, while only 720 cores are used to 
run Poisson. This configuration has contributed to the extremely low efficiencies of these subroutines. 

Gen_VF generates the fragment potential from the global potential and the passivation potential, while 

Gen_dens patches up the fragment charge density to yield the global charge density. Both of these 
subroutines perform minimal floating-point operations; most of the time is spent on data communications. 

This is evident by comparing the total number of floating point operations to the total number of machine 

instructions measured in these subroutines. In Gen_VF, the number of floating-point operations is only 

about 0.0013% of the total number of machine instructions; in Gen_dens, this number is 0.25%. On the 
other hand, for PEtot_F, the percentage of the floating-point operation instruction relative to the total 

machine instructions is about 60%.  For the Poisson solver, we have used an open boundary condition. 

This is realized by doubling the size of the supercell in each direction, then performing the FFT on the 
larger box. The efficiency of this subroutine is also very poor, indicating room for improvement. Time is 

probably taken up by subroutines other than the FFT, for example in the box doubling routines. Right 

now, PEtot_F takes about 90% of the time for each SCF iteration, while the other three inefficient 
subroutines take up the remaining ten percent. Only after we substantially improve the performance of the 

PEtot_F (e.g., by strong scaling) does it become important to improve the other three subroutines. Even 

then, we would strive only to reduce the amount of time spent in these subroutines.  

 
Ntot (core)  10,800 21,600 43,200 8,640 17,280 

Ng (group)  108 108 108 108 216 

Nc (cores/group)  100 200 400 80 80 

Initial PEtot_F (20 iter) Time(sec) 6714 4653 4860 6494 3872 

 % peak 16.2% 10.4% 5.0% 17.6% 14.8% 

Initial Gen_dvr Time(sec) 215 438 305 229 247 

 % peak 0.064% 0.016% 0.011% 0.075% 0.035% 

Gen_VF      (1 iter) Time(sec) 6.33 5.94 5.55 4.81 5.26 

 % peak 0.0004% 0.0003% 0.0001% 0.0009% 0.0004% 

PEtot_F       (1 iter) Time(sec) 299 220 177 328 223 

 % peak 20.8% 14.7% 9.5% 23.5% 17.3% 

Gen_dens    (1 iter) Time(sec) 8.67 10.82 8.30 9.11 8.75 

 % peak 0.07% 0.06% 0.056% 0.07% 0.07% 

Poisson        (1 iter) Time(sec) 23.3 23.8 18.0 23.3 21.8 

 % peak 0.0038% 0.0018% 0.0012% 0.0047% 0.0025% 
Table 3.3.2: Timings of subroutines within code. 

3.3.7 Computational Performance Gains 

The fastest calculation reported in Q2 to converge the ZnO quantum rod is 3.87 hours using 43,200 

processors. In Q4, we have calculated the exact same ZnO quantum rod system. We have made three 
improvements to the code: (1) introduced a wave function index parallelization within the PEtot_F 

subroutine; (2) implemented a new algorithm: the direct inversion of the iteration space (DIIS) method, in 

addition to the conjugated gradient (CG) method, in the PEtot_F subroutine to converge the wave 

functions; (3) developed a better formula to estimate the computational time of each fragment, which 
allows a better static assignment of fragments into fragment groups. This improves the load balance 

between different fragment groups. After these improvements, with a better strong scaling, by using more 

86,400 processors, we have reduced the computational time (while having the same physical results) to 
1.5 hours. Compared to the best Q2 results of 3.87 hours, this represents a speedup of 2.6 times. This is 

achieved by using more processor groups (432 groups instead of 108 groups, which become useful due to 
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our better load balance), and two band-index groups (Nb=2) under the new wave function index 

parallelization scheme. The largest processor count, 86,420 processors, constitutes more than 25% of the 
whole Jaguarpf machine.   

3.3.8 Q4 Metric Problem Results 

The Q4 benchmark results are listed in Table 3.3.3 and Table 3.3.4. They should be compared with Table 

3.3.1 and Table 3.3.2. Like the Q2 tests, the Q4 calculations consist of 20 initial steps of self-consistent 

calculations for each independent fragment, followed by 40 self-consistent iterations for the whole 

system. Note that for the initial 20 iterations, we always use the CG method in PEtot_F. However, for the 
following 40 iterations, we have tested both the DIIS method and the CG method. We have also tested 

different band groups Nb for the band index parallelization. Note that there could be significant 

fluctuations in the benchmarking results due to the general status of the machine, the processor 
assignment (mapping), and the way the rest of the machine is used. We have thus taken the liberty of 

reporting the best results we have obtained from different runs, or from the fluctuations between different 

iterations steps. These best results represent the ideal performance when the machine is not adversely 

impacted by other jobs of other users. In reality, the performance results might fluctuate by about 10% 
from run to run.  

 
Ntot  

(cores) 

Ng 

(groups) 

Nc 

(cores/band) 

Nb 

(band groups) 

Method Total time  

(hours) 

Tflops/sec % peak 

8,640 108 80 1 DIIS 5.59 17.0 18.9% 

8,640 108 80 1 CG 5.76 18.3 20.3% 

17,280 108 80 2 CG 4.56 23.2 12.9% 

17,280 216 80 1 CG 3.33 31.7 17.6% 

34,560 216 80 2 CG 2.37 44.6 12.4% 

69,120 216 80 4 CG 2.23 47.3 6.6% 

69,120 432 80 2 CG 1.58 66.8 9.3% 

86,400 432 100 2 CG 1.48 71.4 7.9% 

Table 3.3.3: Total LS3DF computation times (for 20 initial iterations plus 40 SCF iterations), flops, and 

percentage of performance to the theoretical limit. Ng is the number of fragment groups, Nc is the number of 

cores in each band group, and Nb is the number of band groups.  Within each fragment group, there are Nc ×  

Nb processors, and Ntot = Ng ×  Nc ×  Nb. 

 

Ntot  

(cores) 

Ng 

(groups) 

Nc 

(cores/band) 

Nb 

(band groups) 

Method PEtot_F time  

(1 iter, sec) 

Tflops/sec % peak 

8,640 108 80 1 DIIS 299 19.8 22.0% 

8,640 108 80 1 CG 314 23.2 25.7% 

17,280 108 80 2 CG 221 33.0 18.3% 

17,280 216 80 1 CG 174 42.0 23.3% 

34,560 216 80 2 CG 112 65.2 18.1% 

69,120 216 80 4 CG 96 76.0 10.5% 

69,120 432 80 2 CG 68 107.4 14.9% 

86,400 432 100 2 CG 61 119.6 13.3% 

Table 3.3.4: The computational time for subroutine PEtot_F for each self-consistent field (SCF) iteration 

(containing 4 CG or 4 DIIS steps).  The times for the other three subroutines (Gen_VF, Gen_dens, and 

Poisson) are unchanged from the Q2 results, and remain unchanged for the different methods in PEtot_F and 

different combinations of Ng, Nc, and Nb.  After averaging out the fluctuations, the times for Gen_VF, 

Gen_dens, and Poisson are 6, 9, and 22 seconds, respectively.  Thus in total they account for 37 seconds for 

each SCF iteration. 

3.3.9 Interpretation of Results 
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We first note that the DIIS is only slightly faster than the CG method in our test. Furthermore, for the 

same number of iterations, DIIS has a lower floating-point operation count than CG. As a result, in terms 
of flops and percentages of the theoretical limit, the DIIS is slightly worse than the CG result. However, 

because DIIS is a different algorithm, and its convergence properties are different from CG, it is difficult 

to compare the CG and DIIS in a fair fashion. We also found that in our current system, sometimes DIIS 

convergence is not stable. Thus, we have not tested the DIIS extensively and compared its result with the 
CG result. But we do know that, for large systems, DIIS can be extremely useful (e.g., for standalone 

PEtot run). Thus, the usefulness of DIIS might be dependent upon the systems we are studying, and the 

size of the fragments. DIIS performs particularly well on larger fragment sizes.  
 

While the band index parallelization (Nb) does help, the strong scaling is not perfect and shows a 

saturation when Nb=4. For the band parallelization, when a wave function orthogonalization or subspace 
diagonalization is needed, the wave functions from different subband groups must carry out an inter-

group dot product. That increases the communication time, hence reduces the parallel efficiency. One 

advantage of band index parallelization is to increase the memory available since more processors are 

used within one fragment group. Note that, if all the processors within each fragment group are assigned 
to Nc (the G-space parallelization), the FFT might not have a high parallel efficiency. Furthermore, if real 

space nonlocal projections are used, a large Nc will fragmentize the real space projector data, and slow 

down that part of the calculation. 
 

In our Q4 calculation, an additional major improvement we made in the code resulted in better load 

balance between different fragment groups. In order to do that, one needs a better model to predict the 
computational time for each fragment. We have improved our original model, and obtained a better fit of 

the formula. As a result, we are able to scale to larger number of fragment groups (e.g., 432 groups in our 

test).  

 
Note that, from the 17,280 processors used in Q2 (the best performance case in Q2) to 86,420 processors 

in this Q4 result, the processor number has increased by a factor of 5, while the time has only improved 

by a factor of 2.7. Thus the parallel efficient is only about 54%. Part of the reason is that the PEtot_F time 
(the part for quantum mechanical calculation) has been reduced close to the times of the other parts (the 

classical calculation part). In the case of 86,420 processors, the PEtot_F time for each SCF iteration is 62 

seconds, while the sum of the other three parts (Gen_VF, Gen_dens, Poisson) is 37 seconds. Thus, in 

order to have an even better strong scaling performance, we have to improve these three classical parts. 
For the Q2 to Q4 performance improvement activity, we have not touched these three parts. Future 

improvement is likely, in particular to rewrite the algorithms to use more processors. Currently, a fixed 

number of processors (a very small percentage of the total number of processors) are used for these three 
parts regardless of the total number of processors. This points out the possible future improvement of the 

LS3DF code.  

3.3.10 Summary and Conclusions 

We have used the LS3DF code to calculate a 2776-atom ZnO nanorod with 24,220 valence electrons. 

The calculation result shows a strong dipole moment, which has significantly tilted the internal potential 

of the rod. Further investigation revealed that this dipole moment comes from the side surface of the ZnO 
wurtzite nanostructure.  

In the Q2 benchmark, the original production LS3DF code was used. At the largest processor count 

(43,200), it took 3.87 hours to converge. Twenty initial self-consistent steps are used for the independent 
fragments, and 40 self-consistent steps are used for the whole system. From Q2 to Q4, we have made 

three major developments: (1) a band-index parallelization with the PEtot_F subroutine; (2) the DIIS 

algorithm in PEtot_F for wave function optimization; (3) an improved fragment-to-fragment group 
assignment algorithm to improve load balance between fragment groups.  
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Our Q2 to Q4 tests are based on improving strong scaling.  As has already been demonstrated [14], 

the LS3DF code can exhibit almost perfect weak scaling to hundreds of thousands of processors, and tens 
of thousands of atoms. Using the improvements described in the above paragraph (in particular (1) and 

(3)), we have demonstrated strong scaling to a significant fraction of Jaguar: we have successfully 

reduced the computational time from the original 3.87 hours on 43,200 processors to 1.48 hours on 

86,400 processors, a factor of 2.6 improvement in timing from doubling the number of processors.  
LS3DF has met the metric because the ratio of the Q2 to Q4 timings exceeds two. 
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3.4 DENOVO 

3.4.1 Introduction 

Denovo [4, 5] is a linear radiation transport application for nuclear and radiological sciences. This 

application area includes, but is not limited to nuclear reactor analysis, fusion, radiation shielding and 

protection, nuclear safeguards, radiation detection, and radiation therapy, diagnostics, and treatment 

planning. 
The science and engineering driver for the current work is nuclear reactor analysis. Nuclear reactor 

analysis requires accurate characterization of the neutron distribution in the reactor in order to determine 

power, safety, and fuel and component performance. In a steady-state operational reactor, the neutron 
field is characterized by six independent variables (three in space, two in angle, and one in energy), and 

the mean flight times of low-energy neutrons are in the millimeter to centimeter range. Thus, high-

resolution solutions of the transport equation require tremendous computational resources. Traditionally, 
computational resources have not been sufficient to attack this problem at full resolution, so multi-level 

approximation schemes have been employed. However, the Jaguar XT5 leadership system enables us to 

attack this problem from a full transport approach. To achieve this goal, Denovo has synthesized the last 

decade’s worth of computational transport work into a modern, production-quality code that can begin to 
attack full-core reactor analysis from an ab initio approach. 

3.4.2 Background and Motivation 

The transport of neutrons in matter is governed by the linear Boltzmann transport equation, 

1

v

∂ψ (x,Ω,E,t)

∂t
+ Ω̂·∇ψ (x,Ω,E,t) +σ (x,E)ψ (x,Ω,E,t) = q

e
(x,Ω̂,E,t) +

 

σ
s
(s, ′Ω̂ ·Ω̂, ′E → E)∫∫ ψ (x, ′Ω , ′E ,t)d ′Ω d ′E +  

 
χ(x,E)

4π
νσ

f
(x, ′E )ψ (x, ′Ω̂ , ′E ,t)d ′Ω d ′E∫∫ , (1) 

Here, ψ  is the radiation intensity, σ  is the total interaction cross-section, σ
s
 is the scattering cross-

section, σ
f
 is the fission cross-section, and ν  is the number of neutrons emitted per fission event. The 

fission energy-spectrum is defined by χ . In non-multiplying material, σ
f
= 0 ; however, when the 

fission is nonzero, Equation 1 has no steady-state solution. In this case, we must solve the eigenvalue 

form of Equation 1, 

Ω̂·∇ψ (x,Ω,E) +σ (x,E)ψ (x,Ω,E) − σ
s
(s, ′Ω̂ ·Ω̂, ′E → E)∫∫ ψ (x, ′Ω , ′E )d ′Ω d ′E =  

1

k

χ(x,E)

4π
νσ

f
(x, ′E )ψ (x, ′Ω̂ , ′E ,t)d ′Ω d ′E∫∫ , (2) 

The value k  is the effective- k  ( k
eff

) of the system and is a measure of the neutron production per 

generation. In order to maintain a sustainable, stable reactor, k
eff
= 1 .  When k

eff
< 1  the system is sub-

critical and when k
eff
> 1  the system is super-critical. The goal of reactor design is to keep k

eff
 as close 

to unity over as wide a range of operating conditions as possible. 

Most of reactor core design deals with the solution of Equation 2, although solving Equation 1 is 

required to perform shielding analysis and assess component performance. In general the full radiation 
field is not required for practical analysis; instead, our approach focuses upon the first two angular 

moments of the radiation field, 

 φ(x,E) = ψ (x,Ω,E)dΩ
4π∫ , (3) 
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 J(x,E) = Ω̂ψ (x,Ω,E)dΩ
4π

∫ . (4) 

Equation 3 is the scalar intensity (or scalar flux) and Equation 4 is the radiation current. The scalar flux is 

used to calculate the spatial power distribution in the reactor core, 

 P ∝ σ
f
(x,E)φ(x,E)dV dE∫∫ . (5) 

Finally, the reactivity is an important measure of reactor operation, 

 ρ =
k
eff
−1

k
eff

. (6) 

The reactivity is measured in dimensionless units of Δk / k  or pcm (10
−5
Δk / k ). 

Most reactor analysis requires the solution of Equation 2. A survey of the literature shows that many 

transport approximations have been used throughout the years to calculate the k –eigenvalue and power 

distribution.  
 

   
 (a) α = pincell (b) β = lattice (c) γ = core 

Figure 3.4.1: Three levels of reactor geometries. 

 

Present reactor transport methods use an inconsistent three-level homogenization approach (each 
within distinct simulation codes) in modeling radiation transport in the core of a nuclear reactor. Figure 

3.4. depicts the spatial domains of this multi-scale challenge: α use of a fine-mesh in one spatial-

dimension in an approximate small subset (pincell) of the reactor core with a first-principles 
representation of the energy spectrum; β, use of a coarser-mesh with a two-dimensional transport solution 

in a larger subset (lattice) of the core with grouped representation of the energy spectrum, provided by the 
previous step; and γ, use of a very coarse mesh in a three-dimensional diffusive transport of neutrons in 

the full homogenized core of the reactor with a very coarse representation of the energy spectrum 

provided by the previous step.  The first two steps (α,β) require 107 to 108 degrees of freedom (DoF) with 

102 to 103 independent calculations each on single processor machines.  Recent work at ORNL has 

demonstrated that, with moderate computational resources, this can be reduced to an inconsistent two-
step approach, where step (A) utilizes the energy fidelity of α with the spatial domain of β and step (B) 

uses the energy fidelity of β and the spatial domain of γ. In this approach, each step would require 1011 to 

1013 DoF per step with 102 independent high-order (A) calculations for every timestep. With access to 

petascale computational resources, researchers at ORNL are using Denovo to develop a first-of-a-kind 

capability that integrates the two-level approach within a single application framework and incorporates a 

mathematically consistent algorithm that is extensible to novel reactor concepts. However, the orders-of-
magnitude increase in fidelity of each of the two steps requires substantially more computational 

resources than algorithms currently utilize today. Therefore, a novel approach to parallelization of the 

transport equation must be developed. 



 

61 

3.4.3 Capability Overview 

Denovo solves the time-independent form of Equations 1 and 2 using the discrete ordinates (SN) 

method. It also features a Monte Carlo module that can be used to solve the multigroup equations on the 
SN spatial grid with continuous angular treatment. The fundamental features of Denovo can be 

summarized as: 

 3-D, Cartesian orthogonal structured (nonuniform) grids 

 Steady-state fixed-source, Equation 1, and eigenvalue, Equation 2, modes 
 Spatial domain decomposition (DD) parallelism using the Koch-Baker-Alcouffe (KBA) 

sweep algorithm [31] 

 Krylov and source-iteration within-group solvers 
 Multigroup with optional thermal upscattering 

 Diffusion Synthetic Acceleration (DSA) preconditioning of within-group solves and 

transport two-grid acceleration of Gauss-Seidel iteration for upscatter groups 
 Rebalance eigenvalue acceleration 

 Forward and adjoint modes 

 Multiple spatial differencing schemes:  

o diamond difference (DD) 
o diamond difference with linear-zero flux fixup (DDLZ) 

o theta-weighted diamond difference (TWD) 

o step characteristics (slice balance) (SC) 
o linear-discontinuous finite element (LD) 

o trilinear-discontinuous finite element (TLD) 

 Reflecting, vacuum, and surface source boundary conditions 

 First collision and distributed external fixed sources 
o Domain-replicated parallel ray-tracing uncollided flux solver for point sources 

o Domain-replicated and decomposed Monte Carlo uncollided flux solver for point and 

distributed sources 
 Multiple input front-ends, including Python bindings 

 Support for multiple outputs, including HDF5 formatted SILO files that can be directly 

read by VisIt. 
Denovo builds and runs on most flavors of Linux (i386 and x86_64), MacOS (32 and 64-bit), and 

Windows (serial only). It has been used extensively on OLCF’s Jaguar leadership systems (Cray XT4 and 

XT5). The code is actively compiled and tested using the following compiler families: GNU 

(gcc/g++/gfortran), Intel (icc/icpc/ifort), and PGI (pgcc/pgCC/pgf90). 
Denovo is written primarily in C++, but it contains FORTRAN and C computational kernels as well as 

shared object bindings for Python (along with direct Python code). It uses a GNU-based configure/make 

system with an integrated testing environment. Current (March 2010) lines-of-code statistics are 
 

C++ Executable Code 18,570 

F95 Executable Code 931 

Total Executable Code 19,501 

  

C++ Unit Test Code 33,773 

Python Unit Test Code 4,424 

Total Unit Test Code 38,197 

 
Denovo is developed using an Agile Software Process that emphasizes unit testing at the point of code 

construction. As seen from the code statistics, the majority of code in the Denovo package is test code that 

is distributed among 169 separately compilable unit-tests. 
Denovo makes extensive use of external packages for many features. The base code requires the 

following third-party libraries: 
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 BLAS/LAPACK 

 GNU GSL 
 Trilinos 

The following libraries provide optional capabilities and are not required, although the associated 

functionality will be unavailable without them: 

 MPI (parallel communication) 
 SILO (formatted output for VisIt) 

 HDF5 (output) 

 BRLCAD (CAD-based meshing capabilities) 
 SuperLU/METIS (optional direct sparse solver for DSA, uses PCG from Trilinos by 

default) 

 SPRNG (Monte Carlo module and Monte Carlo first-collision source) 
 Python/SWIG (required to build Python bindings) 

Finally, Denovo makes use of the following tools (although they are not necessarily required to build/run 

the code): 

 Graphviz (optional for inline documentation) 
 Doxygen (required for inline documentation) 

 Emacs (optional for development environment) 

 Python (required for testing framework) 
 Sphinx (required to build PyKBA documentation) 

 TeXinfo (required for build and developer documentation) 

 LaTeX (required for methods documentation) 
Denovo uses Subversion for configuration management, and it is hosted on the NSTD GForge server 

(http://nstdsrv.ornl.gov). 

3.4.4 Science Driver for Metric Problem 

In order to advance the state-of-the-art for next generation reactor designs and to improve 

performance of existing designs while preserving operational safety margins, transport calculations with 

higher geometric fidelity, solution accuracy, and physical model realism are required. In particular, there 
is a strong need to move away from the semi-empirical, inconsistent multi-level approaches described in 

Section 3.4.2 because the experimental facilities required to validate that process are no longer in 

existence. The ultimate goal is to perform fully resolved, three-dimensional transport simulations of the 
entire core. While full-core, pin-resolved transport simulations are still beyond the scope of existing 

computer architectures, we can begin to attack the problems using three-dimensional transport.  Within a 

decade, exascale architectures should permit a class of full-core, pin-resolved transport simulations that 

will surpass the current goal of an inconsistent two-step procedure. 
With these goals in mind, a full-core pressurized water reactor (PWR) benchmark problem has been 

chosen as the metric problem.  The core is an EDF PWR900 [6] model core with the dimensions outlined 

in Table 3.4.1. 
 

Core Height Assembly Height Lattice Pitch Assemblies 

4.2 m 3.6 m 1.26 cm 17×17 (289) 

157 fuel 

132 reflector 
Table 3.4.1: PWR900 core dimensions and configuration. 

 
The core contains 289 (17×17) total assemblies, of which 157 are fuel and 132 are in the reflector. Each 

assembly contains a 17×17 array of homogenized fuel pins as shown in Figure 3.4.2. Three different fuel 

enrichments ranging from 1.5% to 3.25% (LEU, MEU, HEU) are used in the assemblies.  Each assembly 
contains 45 homogenized pin-cells.  Summing 45 pin-cells per assembly with 3 enrichment levels yields 

135 total materials.  The core problem geometry is shown in Figure 3.4.3. 
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Figure 3.4.2: PWR900 17×17 pin fuel assembly. The pins have been homogenized into 45 unique 

materials in each assembly. The labels show the material ids in a LEU assembly.  Material ids cover the 

ranges [1,45] (LEU), [46, 90] (MEU), and [91, 135] (HEU). All assemblies have the same ¼ symmetry pattern. 

 

 

  
(a) (b) 

Figure 3.4.3: PWR900 core model: (a) 2D radial view (xy-plane), and (b) 3D view showing axial (z-axis) 

geometry.  The assembly enrichments are LEU (light blue), MEU (red/blue), and HEU (yellow/orange).  

 

Denovo is used to solve Equation 2 for the k –eigenvalue and the scalar flux throughout the core. 

Using the scalar flux, the pin power distribution, fission source, and groupwise power distributions can be 
analyzed. The ability to solve pin-homogenized, whole-core problems with transport, as opposed to 

diffusion or other low-order approximations, is the first step towards fully predictive reactor core 

modeling and simulation. To achieve first-principle predictive capability, each pin would be fully 
resolved in the three-dimensional, whole-core model. This objective cannot be approached, however, until 

we have demonstrated the ability to solve pin-homogenized, three-dimensional reactor problems with full 

transport. 

3.4.5 The Model and Algorithm 

Denovo solves Equations 1 and 2 using the discrete ordinates (SN) method, a finite-element 

collocation scheme in angle in which the transport equation is solved at discrete angles. The scattering 
source is represented by an expansion in spherical harmonics and the energy is discretized using the 

multigroup approximation (Petrov-Galerkin finite element). In order to preserve particle balance 

(conservation) the discrete angles are chosen from a quadrature set that is capable of integrating the 
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spherical harmonics in the scattering expansion.  The resulting system of discrete equations for Equation 

2 takes the form 
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where the moments of the angular flux are defined as 
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From Equation 8 the scalar flux of Equation 3 is defined to be proportional to the (0, 0) angular flux 

moment: 
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In operator form (7), (8), and (9) are written 

 LΨ =MSΦ−
1

k
Mχf TΦ , (11) 

 Φ = DΨ . (12) 
In block matrix form we have 
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Taking the Schur Complement gives 

 I − TS( )Φ =
1

k
Tχf TΦ , (14) 

where T = DL
−1
M . Recall that the full eigenvector matrix, Φ , is a function of energy, space, and angle 

(moments), 

 Φ = φ[ ]
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, (15) 

where each ⋅[ ]  indicates a block matrix over space and moments for a given energy group. The matrices 

in Equation 14 have the following form 
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The fission matrix is a rank-one matrix assembled from the fission spectrum and cross-section vectors, 

 F[ ]
g ′g
= χ[ ]

g
νσ

f[ ]
′g
. (17) 

Traditionally, the energy-dependent eigenvector of flux moments is not required because reactor power 

via Equation 5 is the pertinent quantity in reactor analysis. In this case, the eigenvector is defined as the 

total fission source, 

 R = f
T
Φ , (18) 

and Equation 14 becomes 

 f
T
I − TS( )−1Tχ



R = kR . (19) 

Defining A = f T I − TS( )−1Tχ , Equation 19 has the common eigenvalue form AR = kR . 

The traditional method for solving Equation 19 is power iteration, 

 R
n+1

=
1

k
AR

n
, (20) 

where the operation requires the solution to a multigroup fixed source problem, 

 I − TS( )Φn+1 = Tχf TΦn = q
f

n
. (21) 

The solution strategy for the multigroup problem depends largely on the structure of S . The most 
straightforward approach is to use Gauss-Seidel iteration, 
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When S  is lower-triangular (no upscattering), Gauss-Seidel iteration over energy will converge in a 

single iteration. For each group in the Gauss-Seidel iteration, a full space-angle transport equation must 

be solved. The default eigenvalue solution procedure in Denovo is as follows: 
1. Outer eigenvalue power iterations to solve Equation 20 

2. Gauss-Seidel iteration over energy to solve (21) for each eigenvalue iteration 

3. GMRES Krylov iteration over space-angle to solve (22) for each group in the Gauss-Seidel 
iteration 

Additionally, Denovo provides Two-Grid Transport Acceleration [5] to accelerate the Gauss-Seidel 

iteration over energy when upscatter is present. DSA is also available as a preconditioner for GMRES. 

Finally, Denovo provides rebalance eigenvalue acceleration for Equation 20 [31]. 
The innermost part of each step in the aforementioned process is the solution of 

 Tφ = DL−1Mφ = q . (23) 

The transport streaming plus removal operator, L , is a lower-left triangular operator for each angle 

that can be directly inverted by upwinding in the direction of neutron travel. The resulting solution is 
termed a transport “sweep” in the nuclear engineering literature. In the general numerical methods 

parlance this is a wavefront solution. Regardless of terminology, each eigenvalue iteration requires many 

transport sweeps. This is the most time-consuming part of the transport solution, and in general, 95-99% 

of the calculation time is spent doing transport sweeps. The upwinding, recursive nature of transport 
sweeps prevents easy linear scaling algorithms from being implemented. Parallel block-Jacobi methods 
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can be used, but these become very inefficient when the angular intensity is changing rapidly at processor 

boundaries. Plus, the transport sweep is only the innermost of several levels of iteration; thus, it is 
advantageous to use direct inversions at this level whenever possible. Denovo uses the well-known Koch-

Baker-Alcouffe (KBA) wavefront algorithm [6] to invert L . 

3.4.6 Q2 Baseline Problem Results 

The PWR900 problem has been described in Section 3.4.4. For the Q2 baseline we are solving this 

problem using the discretization parameters described in Table 3.4.2. The Q2 problem uses a 2×2 spatial 

mesh in each pin cell. This yields 578 mesh cells in each radial direction, and each cell has a width of 
0.63 cm. In the axial direction the model has 700 cells yielding 0.6 cm resolution. With this grid 

discretization, each mesh cell has a nearly uniform aspect ratio (0.63×0.63×0.6). The spatial mesh is 

illustrated in Figure 3.4.4. For the Q2 baseline, Denovo uses the step-characteristics method that has one 
spatial unknown per cell.  

 
Cells Unknowns per cell Angles Moments Groups Total unknowns 

233,858,800 1 168 1 2 7.86×1010 
Table 3.4.2: Discretization of the Q2 problem. 

 

The pin-cell cross sections are collapsed into two groups: fast and thermal. The fission spectrum is 

1.0 in the fast group and zero in the thermal group.  All cross sections use P0 scattering (1 angular 

moment).  With these parameters, the total number of unknowns required by the Q2 baseline problem is 
7.86×1010.  

 

  
Figure 3.4.4: Close-up view of the Denovo spatial grid in the radial (xy) plane. Each homogenized pin cell 

has a 2×2 spatial grid of 0.63×0.63 cm. The each cell has a 0.6 cm resolution in the axial (z) direction. 

 

The Q2 benchmark was run with a k
eff

 tolerance of 1×10-3 and an eigenvector tolerance of 0.1. The 

problem was run on Jaguar/XT5 on 17,424 cores with a parallel decomposition of 132×132 domains in 

(x, y)  with 175 z-blocks. The runtimes (wall clock) for the Q2 benchmark are given in Table 3.4.3.  

Computational solver costs of the problem are shown in Table 3.4.4.  PAPI instrumentation output is 

given in Table 3.4.5. 
 

Total Time Setup Solver Sweep Two-Grid Within-Group 

187.68 0.76 186.47 186.34 50.68 133.38 
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Table 3.4.3: Wall clock timing measurements. All times are in minutes.  The solver contains the within-group 

and two-grid times. The vast majority (99.3%) of the runtime is spent doing transport sweeps. 

 
Eigenvalue 

Iterations 

Gauss-Seidel 

Iterations 

Within-group 

Iterations 

Two-Grid 

Iterations 

Total GMRES 

Iterations 

Source Sweeps Total Sweeps 

7 21 636 246 882 56 938 
Table 3.4.4: Computational iteration costs for the Q2 benchmark problem. 

 
FP PAPI INS PAPI L2 Cache Misses FLOPS Cycles FP/Cycle/Core 

3.983e15 7.101e17 3.197e13 3.560e11 2.909e13 7.859e-3 
Table 3.4.5: PAPI instrumentation for Q2 problem. 

3.4.7 Scalable Multigroup Transport Algorithms 

The standard power iteration method with Gauss-Seidel multigroup iteration and within-group Krylov 

iteration utilizing KBA sweeps is insufficient to scale to O(100K) processors. This is due to the 

communication latency incurred by KBA. As the KBA blocks become very small, the amount of time 
spent passing messages between blocks dominates the time spent solving each block. Scoping studies on 

Jaguar have shown that KBA tracks its theoretically predicted efficiency when the block is set greater 

than ~1500 cells. Thus, for any given problem, the maximum number of cores is predetermined by the 
minimum block size. Even a 500M cell problem will be limited to 15,000 - 20,000 cores under these 

restrictions.  To utilize the full resources of Jaguar we must find additional variables to parallelize.  Using 

a new set of advanced solvers in Denovo, a multilevel decomposition over energy provides the necessary 
parallelism. 

To scale to O(100K) cores, we have implemented an expanded solver taxonomy in Denovo that is 

divided into Within-Group Solvers, Multigroup Solvers, and Eigenvalue Solvers. These are arranged in 

levels as in to Figure 3.4.5. 

 
Figure 3.4.5: Expanded solver taxonomy in Denovo. 

 

The newly implemented Krylov multigroup solvers allow a multilevel decomposition in energy-

space-angle as illustrated in Figure 3.4.6. In this decomposition space is partitioned into blocks. Energy is 
partitioned into sets. Each set contains the full mesh (all of the blocks) such that KBA sweeps never cross 

set boundaries.  Every (block, set) combination is termed a domain. The total number of domains is  
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Figure 3.4.6: Denovo multilevel energy decomposition. Energy is decomposed in sets and space-angle is 

decomposed in blocks. 

 

currently the same as the number of MPI processes in a parallel job. The old (Q2) Denovo space-angle 
decomposition can be thought of as a single-set energy decomposition over Np blocks. 

Having described the multilevel energy decomposition, the solver taxonomy can be described in more 

detail. In particular, the implementation of multigroup Krylov solvers enables the decomposition over 
energy. 

3.4.7.1 Within-Group Solvers 

All of the within-group solvers are parallelized over space because, by definition, they require no 
coupling between energy groups.  Thus, they operate only within a set, not across sets. 

 

 

 
 

 

3.4.7.2 Multigroup Solvers 

Multigroup solvers are used independently to solver fixed-source problems, or they can be used in the 

inner iterations of eigenvalue problems. The multigroup solvers are parallelized over space-angle (blocks) 

and energy (sets), although not all solvers support energy parallelization.  For example, the Gauss-Seidel 

solver does not support parallelization over energy. 
 

Solver Preconditioning Parallelization 

Direct Krylov DSA Interblock KBA 

Residual Krylov DSA Interblock KBA 

Source Iteration  Interblock KBA 
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Solver Preconditioning Parallelization 

Gauss-Seidel TTG Single-set energy partitioning 

Gauss-Seidel/Krylov  Gauss-Seidel over downscatter groups 

replicated on each set, Krylov iteration over 

upscatter groups using multiset energy 

partitioning 

Krylov Multigrid energy, LU Multiset energy partitioning 

 

3.4.7.3 Eigenvalue Solvers 

The parallelization is largely determined by the choice of multigroup solver. Some eigenvalue solvers 
can solve both energy-dependent and energy-independent eigenvectors, and this choice dictates the 

parallelization strategy. 
Solver Eigenvector Multigroup Solvers 

Power Iteration Energy independent Gauss-Seidel, Krylov, and Gauss-Seidel/Krylov 

Arnoldi Energy independent/ 

energy dependent 

Krylov and Gauss-Seidel/Krylov 

Rayleigh 

Quotient Iteration 

Energy dependent Krylov 

3.4.8 Additional Code Optimizations 

In addition to the new solvers and parallel decompositions introduced in Section 3.4.7, we have also 

optimized the KBA space-angle sweep algorithm in Denovo. We have implemented three optimizations: 

• fixed an ordering error in octant-level pipelining 
• improved the quadrant-level pipelining 

• applied latency analysis for KBA sweeps 

The first two optimizations refer to the sweep ordering. The Q2 baseline and characterization runs 
revealed an error in angular pipelining. Instead of running pairs of (+Z) octants, Denovo was 

implementing the octant-based pipelining in a haphazard way. The end result was that a given process 

could not start work at the end of its angular sweep. We have fixed the pipeline ordering of angles so that 

a core can immediately begin work on the –Z angles as soon as its +Z angles have been completed. 
An additional optimization resulted from the latency analysis alluded to in Section 3.4.7. Mainly, we 

discovered that best results with the code are attained when the cell-block size is greater than 1500 cells. 

Although this adds a constraint on the attainable scalability, it improves performance for a given number 
of cores, and we are able to amortize the cost of sweeps by applying our new multilevel energy 

decomposition. 

3.4.9 Q4 Problem Results 

The Q2 baseline problem was executed using 2 energy groups. The Q4 problem targeted 44 energy 

groups, resulting in a factor of 22 increase in the total DoF. However, before continuing, we define the 

weak-scaling efficiency that we will use in the remainder of this report, 
 

 ε =
τ
ref

τ
P

DoF
P

DoF
ref







,     τ = t × Np . (24) 

 

Here, t is the wall-clock time and Np is the number of processors (cores).  The “ref” result refers to the 

Q2 baseline problem shown in Tables 3.4.3 – 3.4.5. The “P” subscript refers to the target problem.  
The first set of runs was performed on the Q2 problem to demonstrate the performance improvements 

that resulted from code optimizations and new solvers.  The second set of cases consisted of a 44-group 

version of the Q2 problem as described in Table 3.4.6. The full set of cases is described in Table 3.4.7. 
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Cells Unknowns per cell Angles Moments Groups Total unknowns 

233,858,800 1 168 1 44 1.73×1012 
Table 3.4.6: Discretization of the Q4 problem.  It has 22 times more DoF than the Q2 problem. 

 
Problem Case Description 

Q2 0 Baseline problem run using power iteration with transport two-grid 

preconditioned Gauss-Seidel multigroup solver.  The parallel decomposition 

was 132×132 with 175 z-blocks. 
Q2 1 Same solvers and decomposition as 0, but included improved KBA sweep 

ordering and block size analysis resulting in 10 z-blocks. 

Q2 2 Same as case 1 but used a residual Krylov solver for within-group solves. 

Q2 3 Used the multigroup Krylov solver with a multilevel energy decomposition 

of 2 sets. The mesh decomposition was 102×100 with 10 z-blocks. 

Q2 4 Used the Arnoldi eigenvalue solver with a Krylov multigroup solver 

partitioned over 2 sets. The mesh decomposition was 102×100 with 10 z-

blocks. 

Q4 5 Power iteration with a Gauss-Seidel/Krylov multigroup solver partitioned 

over 11 sets. The mesh decomposition was 102×100 with 10 z-blocks. 

Q4 6 Same as case 5 but used a full-partitioned Krylov multigroup solver 

partitioned over 11 sets. 

Q4 7 Arnoldi solver with a Gauss-Seidel/Krylov multigroup solver partitioned 

over 11 sets. The mesh decomposition was 102×100 with 10 z-blocks. 

Q4 8 Same as case 7 but used a full-partitioned Krylov multigroup solver 

partitioned over 11 sets. 

Table 3.4.7: Performance cases run during Q3 and Q4. The Q2 baseline is given as case 0 (see Tables 3.4.3 – 

3.4.5.) 

The results in set 1 are shown in Table 3.4.8.  Results for set 2 are shown in Table 3.4.9. All results 

are referenced to the Q2 baseline problem (case 0). Looking at the set 1 results, we see that the sweep-

order optimizations and block-size analysis produce a significant savings without any additional solver 
improvements. These improvements result in a factor of 12 gain over the baseline case both in terms of 

parallel efficiency and percent peak utilization. The multigroup Krylov solver options allow the use of the 

multilevel parallel decomposition. Decomposing the Q2 problem over 2 sets allows a more efficient 
space-angle decomposition while still using roughly the same amount of computing resource. This 

solver/parallel decomposition option (case 3) produces a factor of 52 efficiency gain over the baseline 

case. Using the Arnoldi eigenvalue solver instead of power iteration is even more efficient and results in a 

factor of 77 gain over the baseline case (case 4). 
 

Case Cores Solver 

Runtime 

(m) 

FP 

PAPI 

L2 

Cache 

Misses 

FP/Cycles/Core % Peak ε  

1 17,424 15.15 3.983e15 4.050e12 0.097 2.419 12.311 
2 17,424 11.00 2.664e15 3.113e12 0.089 2.227 16.952 

3 20,400 3.03 1.233e15 2.193e12 0.128 3.196 52.563 

4 20,400 2.05 8.838e14 1.462e12 0.136 3.390 77.738 

Table 3.4.8: Results of set 1 problem runs.  % Peak is referenced to a maximum peak efficiency on Jaguar of 

4 FP/Cycle/Core. 

 
Case Cores Solver 

Runtime 

(m) 

FP 

PAPI 

L2 

Cache 

Misses 

FP/Cycles/Core % Peak ε  

5 112,200 38.88 6.544e16 1.065e14 0.098 2.439 16.622 
6 112,200 36.30 5.090e16 1.125e14 0.080 2.003 17.552 
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Case Cores Solver 

Runtime 

(m) 

FP 

PAPI 

L2 

Cache 

Misses 

FP/Cycles/Core % Peak ε  

7 112,200 25.81 4.656e16 7.836e13 0.103 2.577 24.684 

8 112,200 20.36 2.861e16 6.680e13 0.080 2.007 31.290 

Table 3.4.9: Results of set 2 problem runs.  % Peak is referenced to a maximum peak efficiency on Jaguar of 

4 FP/Cycle/Core 

All of the results in set 1 were generated using roughly the same computing resource as the Q2 

baseline. Our analysis of KBA has demonstrated that this is the maximum amount of resource that could 

be used on a problem of this space-angle size. Using the standard power iteration plus Gauss-Seidel 
multigroup solver option with KBA sweeps will be unable to solve a similar sized problem with more 

energy groups because adding more domains to the KBA partitioning will not result in greater efficiency. 

Yet, the science driver for nuclear energy is greater energy resolution on full core simulations. The 

combination of Denovo’s new Krylov solvers and the multilevel parallel decomposition can break 
through this barrier because additional computing resource can be applied in the decomposition over 

energy. The problems in set 2 are designed to demonstrate this capability. Table 3.4.9 shows that the 

multilevel energy decomposition allows Denovo to solve a 44-group version of the baseline problem 
effectively on 112,200 cores. Using the baseline case as a reference, even though it would be impossible 

to effectively run this size problem using the solvers in the baseline problem, we see that the new solvers 

and multilevel parallel decomposition results in factors of 16 – 31 efficiency gains over the baseline 
problem. For each method, Denovo is achieving approximately 2 – 2.5 % peak efficiency. 

3.4.10 Conclusions 

We have implemented several code optimizations, a new parallel decomposition, and several new 
solvers that allows Denovo to scale to O(100K) cores. The combination of these solver and code-level 

improvements has resulted in factors of 16 – 31 parallel performance efficiency over a Q2 baseline 

problem run with Denovo’s original solver suite. Furthermore, these improvements were attained while 
increasing the machine utilization from 17,424 to 112,200 cores. Additionally, machine peak efficiency 

has increased from 0.196% for the baseline case to between 2 and 2.5% for the new solvers and multilevel 

parallel decomposition. 

Denovo was exercised in a weak scaling manner – at a minimum, we sought to achieve a constant 

runtime for the same amount of work per core.  Despite increasing the size of the problem by a factor of 

22 while increasing the number of processors by only a factor of 6.4, we still achieve a reduction in 

runtime, resulting in a factor of 31 efficiency improvement in the best case.  Denovo has met the metric 

because the parallel efficiency has risen. 

 



 

72 

4. REFERENCES 
 

 
[1] J. K. Dukowicz, R. D. Smith and R. C. Malone, "A reformulation and implementation of the 

Bryan-Cox-Semtner ocean model on the Connection Machine," J. Atmos. Ocean Tech., vol. 14, pp. 294-

317, 1993. 
[2] L. W. Wang, Z. Zhao, and J. Meza, Phys. Rev. B, vol. 77, 2008. 

[3] Z. Zhao, J. Meza, and L.W. Wang, J. Phys: Condens. Matt., vol. 20, 2008. 

[4] T. M. Evans, A.S. Stafford, and K.T. Clarno, "Denovo -- A New Three-Dimensional Discrete 
Ordinates Code in SCALE," Nuc. Tech., August 2010. 

[5] T. M. Evans, K.T. Clarno, and J.E. Morel, "A Transport Acceleration Scheme for Multigroup 

Discrete Ordinates with Upscattering," Nuc. Sci.Eng., July 2010. 

[6] R. S. Baker, and K.R. Koch, "An S_N Algorithm for the Massively Parallel CM-200 Computer," 
Nuc. Sci.Eng., vol. 128, pp. 312-320, 1998. 

[7] A. J. Semtner, "Finite-difference formulation of a world ocean model," in Advanced Physical 

Oceanographic Numerical Modelling, J. J. O'Brien, Ed., ed Mass.: Dordrecht Reidel, 1986, pp. 187-202. 
[8] K. Bryan, "A numerical method for the study of the world ocean," J. Comp. Phys., vol. 4, pp. 

347-376, 1969. 

[9] R. D. Smith, and P. Gent, "Reference Manual for the Parallel Ocean Program (POP)," Los 

Alamos Technical Report, vol. LAUR-02-2484, 2002. 

[10] R. D. Smith, et al., "The Parallel Ocean Program (POP) Reference Manual," Los Alamos 

Technical Report, 2010. 

[11] R. D. Smith, S. Kortas and B. Meltz, "Curvilinear coordinates for global ocean models," 
Los Alamos Technical Report, vol. LA-UR-95-1146, 1995. 

[12] R. J. Murray, "Explicit generation of orthogonal grids for ocean models," J. Comp. Phys., 

vol. 126, pp. 251-273, 1996. 
[13] M. E. Maltrud, and J. L. McClean, "An eddy resolving global 1/10 degrees ocean 

simulation," Ocean Modelling, vol. 8, pp. 31-54, 2005. 

[14] L. W. Wang, B. Lee, H. Shan, Z. Zhao, J. Meza, E. Strohmaier, and D. Bailey, Proc. 

2008 ACM/IEEE Conf. Supercomp. (ACM Gordon Bell), p. Article 65, 2008. 

[15] L. W. Wang. PEtot Home Page. Available: 

http://hpcrd.lbl.gov/~linwang/PEtot/PEtot.html 

[16] F. Gygi, et al., Proc. 2005 ACM/IEEE Conf. Supercomp. (ACM Gordon Bell), 2005. 
[17] W. Kohn, Phys. Rev. Lett., vol. 76, 1996. 

[18] G. Galli, and M. Parrinello, Phys. Rev. Lett., vol. 69, 1992. 

[19] X. P. Li, R.W. Nunes, and D. Vanderbilt, Phys. Rev. B, vol. 47, 1993. 
[20] W. Yang, Phys. Rev. Lett., vol. 66, 1991. 

[21] J.-L. Fattebert, and F. Gygi, Phys. Rev. B, vol. 73, 2006. 

[22] F. Shimojo, R.K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun., vol. 167, 

2005. 
[23] K. Kitaura, E. Ikeo, T. Asada, T. Nakano, and M. Uebayasi, Chem. Phys. Lett., vol. 313, 

1999. 

[24] L. W. Wang, and A. Zunger, J. Chem. Phys., vol. 100, 1994. 
[25] A. Canning, L.W. Wang, A. Williamson, and A. Zunger, J. Comp. Phys., vol. 160, 2000. 

[26] L. W. Wang, Energy & Env. Sci., vol. 2, 2009. 

[27] S. A. Blanton, R.L. Leheny, M.A. Hines, and P. Guyot-Sionnest, Phys. Rev. Lett., vol. 79, 
1997. 

[28] L. S. Li, and A.P. Alivisatos, Phys. Rev. Lett., vol. 90, 2003. 

[29] M. Shim, and  P. Guyot-Sionnest, J. Chem. Phys., vol. 111, 1999. 

[30] G. Bester, X. Wu, D. Vanderbilt, and A. Zunger, Phys. Rev. Lett., vol. 96, 2006. 

 



 

73 

[31] E. E. Lewis, and W.F. Miller, Jr., Computational Methods of Neutron Transport. 

LaGrange Park, IL: American Nuclear Society, Inc., 1993. 
 





 

 





 

 

APPENDICES: BENCHMARK PROBLEM ENVIRONMENTS 
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APPENDIX A.  OVERVIEW 

 

 
We present in this appendix detailed information about the build and run time environments for the 

various benchmarks executed in Q2 and Q4 on the Cray XT5 system at ORNL’s OLCF. An example 

follows where the source code is presented as well as the build and execution process invoked to execute 

instrumented code on the target machine. 
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A.1 MODULES AVAILABLE ON THE TARGET ARCHITECTURE 

A.1.1  MODULES AVAILABLE IN Q2 

(as of February 25, 2010) 
 
---------------------------- /sw/tools/modulefiles -----------------------

------ 
mycraypat   nccsld      nccsld-test nccsld_dev  swadm       swtools 
 
---------------------------- /sw/tools/modulefiles -----------------------

------ 
mycraypat   nccsld      nccsld-test nccsld_dev  swadm       swtools 
 
------------------------------- /opt/modulefiles -------------------------

------ 
Base-opts/2.2.31 
Base-opts/2.2.41(default) 
MySQL/5.0.45 
PrgEnv-cray/1.0.1(default) 
PrgEnv-gnu/2.2.31 
PrgEnv-gnu/2.2.41(default) 
PrgEnv-intel/1.0.0 
PrgEnv-pathscale/2.2.31 
PrgEnv-pathscale/2.2.41(default) 
PrgEnv-pgi/2.2.31 
PrgEnv-pgi/2.2.41(default) 
acml/4.3.0(default) 
alps/1.2.0(default) 
apprentice2/4.4.0.1 
apprentice2/5.0.0 
apprentice2/5.0.1(default) 
cce/7.0.3 
cce/7.0.4 
cce/7.1.1 
cce/7.1.2 
cce/7.1.3 
cce/7.1.4.111 
cce/7.1.5(default) 
cce/7.1.6 
cce/7.2.0.131 
cce/7.2.0.131.save 
cray/MySQL/5.0.64-1.0000.2342.16.1 
dwarf/8.6.0 
dwarf/9.5.0(default) 
elf/0.8.10(default) 
fftw/2.1.5.1 
fftw/3.1.1 
fftw/3.2.0 
fftw/3.2.1 
fftw/3.2.2 
fftw/3.2.2.1(default) 
gcc/4.1.2 
gcc/4.2.0.quadcore 
gcc/4.3.2 
gcc/4.4.1 
gcc/4.4.2(default) 
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hdf5/1.8.2.2 
hdf5/1.8.2.3 
hdf5/1.8.3.0 
hdf5/1.8.3.1(default) 
hdf5/1.8.4.0 
hdf5-parallel/1.8.2.2 
hdf5-parallel/1.8.2.3 
hdf5-parallel/1.8.3.0 
hdf5-parallel/1.8.3.1(default) 
hdf5-parallel/1.8.4.0 
intel/11.0.081 
intel/11.0.083 
intel/11.0.084 
intel/11.1.046(default) 
libfast/1.0 
libfast/1.0.2 
libfast/1.0.4 
libfast/1.0.5 
libfast/1.0.6(default) 
moab/5.3.4 
moab/5.3.6(default) 
modules/3.1.6(default) 
modules/3.1.6.5 
mrnet/2.0.1.1(default) 
netcdf/3.6.2 
netcdf/4.0.0.2 
netcdf/4.0.0.3 
netcdf/4.0.1.0 
netcdf/4.0.1.1(default) 
netcdf/4.0.1.2 
netcdf-hdf5parallel/4.0.0.2 
netcdf-hdf5parallel/4.0.0.3 
netcdf-hdf5parallel/4.0.1.0 
netcdf-hdf5parallel/4.0.1.1(default) 
netcdf-hdf5parallel/4.0.1.2 
pathscale/3.2(default) 
pathscale/3.2.99 
petsc/2.3.3a 
petsc/3.0.0.1 
petsc/3.0.0.4 
petsc/3.0.0.6 
petsc/3.0.0.7 
petsc/3.0.0.8(default) 
petsc-complex/2.3.3a 
petsc-complex/3.0.0.1 
petsc-complex/3.0.0.4 
petsc-complex/3.0.0.6 
petsc-complex/3.0.0.7 
petsc-complex/3.0.0.8(default) 
pgi/10.0.0 
pgi/7.2.5 
pgi/8.0.1 
pgi/8.0.3 
pgi/8.0.4 
pgi/8.0.5 
pgi/8.0.6 
pgi/9.0.1 
pgi/9.0.2 
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pgi/9.0.3 
pgi/9.0.4(default) 
torque/2.4.1b1-snap.200905191614(default) 
torque-chester/2.3.2-snap.200807092141 
torque-chester/2.4.1b1-snap.200903301736(default) 
torque-istanbul/2.4.1b1-snap.200905191614(default) 
torque-jaguar/2.4.1b1-snap.200905191614(default) 
torque-jaguarpf/2.4.1b1-snap.200905191614(default) 
torque-rizzo/2.3.2-snap.200807092141 
torque-rizzo/2.4.1b1-snap.200903301736(default) 
xt-asyncpe/2.0 
xt-asyncpe/2.0.34 
xt-asyncpe/2.1 
xt-asyncpe/2.3 
xt-asyncpe/2.4 
xt-asyncpe/3.1.20 
xt-asyncpe/3.2 
xt-asyncpe/3.3 
xt-asyncpe/3.4 
xt-asyncpe/3.5(default) 
xt-asyncpe/3.6 
xt-atp/1.0(default) 
xt-craypat/4.4.0.4 
xt-craypat/5.0.0 
xt-craypat/5.0.1(default) 
xt-craypat/craypat 
xt-lgdb/1.2(default) 
xt-libsci/10.3.1 
xt-libsci/10.3.2 
xt-libsci/10.3.3 
xt-libsci/10.3.4 
xt-libsci/10.3.5 
xt-libsci/10.3.7 
xt-libsci/10.3.8 
xt-libsci/10.3.8.1 
xt-libsci/10.3.9 
xt-libsci/10.4.0 
xt-libsci/10.4.1(default) 
xt-mpt/2.1.50HD 
xt-mpt/3.1.0 
xt-mpt/3.1.1 
xt-mpt/3.1.2 
xt-mpt/3.2.0 
xt-mpt/3.3.0 
xt-mpt/3.4.0 
xt-mpt/3.4.1 
xt-mpt/3.4.2 
xt-mpt/3.5.0 
xt-mpt/3.5.1(default) 
xt-mpt/4.0.0 
xt-os/2.2.31 
xt-os/2.2.41 
xt-papi/3.6.1a 
xt-papi/3.6.2 
xt-papi/3.6.2.2(default) 
xt-pe/2.2.31 
xt-pe/2.2.41 
xt-service/2.2.31 
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xt-service/2.2.41 
xt4/1.0(default) 
xt5/1.0(default) 
xtpe-target-catamount 
xtpe-target-cnl 
 
------------------------------ /opt/modules/3.1.6 ------------------------

------ 
modulefiles/modules/dot         modulefiles/modules/modules 
modulefiles/modules/module-cvs  modulefiles/modules/null 
modulefiles/modules/module-info modulefiles/modules/use.own 
 
----------------------------- /sw/xt5/modulefiles ------------------------

------ 
DefApps                            liblut/0.9.6 
MiscApps                           liblut/0.9.7 
adios/0.9.10                       liblut/0.9.8 
adios/0.9.10_phdf5                 liblut/0.9.9(default) 
adios/0.9.12                       liblut/1.0.0 
adios/0.9.13(default)              libxml2/2.7.6(default) 
adios/1.0                          libxslt/1.1.26(default) 
adios/1.1.0                        m4/1.4.11(default) 
arpack/2008.03.11(default)         matlab/7.5 
atlas/3.8.2                        matlab/7.7 
atlas/3.8.2-fPIC-dualcore          matlab/7.8(default) 
atlas/3.8.3                        mercurial/1.0.2 
atlas/3.8.3-fPIC-dualcore(default) mercurial/1.3(default) 
autoconf/2.63(default)             metis/4.0(default) 
automake/1.10.1(default)           mpe2/1.0.6(default) 
aztec/2.1(default)                 mpip/3.1.2(default) 
banner/1.3.2(default)              mumps/4.7.3_par(default) 
blas/ref(default)                  mumps/4.9_par 
blas/ref-dualcore                  namd/2.6 
blas-goto/1.0                      namd/2.7b1(default) 
blas-goto/2.0(default)             ncl/5.0.0(default) 
bugget/2.0(default)                nco/3.9.4(default) 
cdo/1.3.1                          nco/3.9.8 
cdo/1.3.2(default)                 ncview/1.93c(default) 
cmake/2.6.1(default)               ncview/1.93g 
cmake/2.6.2                        ncview/1.93g-netcdf4 
cmake/2.6.4                        nedit/5.5(default) 
cmake/2.8.0                        netcdf/3.6.2 
cpmd/3.13.1                        netcdf/4.0.0 
cpmd/3.13.2(default)               netcdf/4.0.0_par 
ddt/2.4.1                          nose/0.10.4(default) 
ddt/2.4.1-11140                    ompi/1.4a1-dtr103 
ddt/2.5.1-12323(default)           ompi/1.4a1r21772 
doxygen/1.5.6                      ompi/1.7a1r22177 
doxygen/1.5.8                      ompi/1.7a1r22229 
doxygen/1.5.9                      ompi/default(default) 
doxygen/1.6.1(default)             ompi/experimental 
dragon/1.0a(default)               ompi/routed-pgi-uos 
ferret/6.1(default)                ompi/routing-pgi 
ferret/6.3                         ompi/routing-pgi-uos 
fftpack/5-r4i4                     ompi/routing-test 
fftpack/5-r8i4                     ompi/routing-test-hexcore 
fftpack/5-r8i8(default)            ompi/standard(default) 
fftw/3.1.2                         p-netcdf/1.0.2 
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fftw/3.1.2-dualcore                p-netcdf/1.0.3(default) 
fftw/3.2                           p-netcdf/1.1.1 
fftw/3.2-dualcore                  parmetis/3.1 
fftw/3.2.1                         parmetis/3.1.1(default) 
fftw/3.2.2                         perl-gd/2.44(default) 
fftw/3.2.2-dualcore                petsc/2.3.3-debug 
fpmpi/1.0                          petsc/3.0.0-custom 
fpmpi/1.1(default)                 petsc/3.0.0-debug 
fpmpi_papi/1.0                     petsc-complex/2.3.3-debug 
fpmpi_papi/1.1(default)            petsc-complex/3.0.0-debug 
gamess/2008Mar04                   pgplot/5.2(default) 
gamess/2009Jan12(default)          pltar/0.8.9(default) 
ghostscript/8.64(default)          pltar/0.9.0 
git/1.6.0                          pspline/1.0(default) 
git/1.6.0.4                        python/2.5.2 
git/1.6.2.4                        python/2.5.2-netcdf(default) 
git/1.6.4(default)                 qt/4.3.4(default) 
globalarrays/4.0.8(default)        ruby/1.8.7 
globalarrays/4.1.1                 ruby/1.9.1(default) 
globalarrays/4.2                   silo/4.7(default) 
globus/4.2.1(default)              silo/test 
gmake/3.81(default)                spdcp/0.3.6 
gnuplot/4.2.3                      spdcp/0.3.7 
gnuplot/4.2.4(default)             spdcp/0.3.8(default) 
gnuplot/4.2.5                      spdcp/0.3.9 
gptl/3.4.1                         sprng/2.0b(default) 
gptl/3.4.3                         stagesub/1.0.2 
gptl/3.4.7                         stagesub/1.0.3(default) 
gptl/3.5                           subversion/1.4.6 
gptl/3.5.1                         subversion/1.5.0(default) 
gptl/3.5.2                         sundials/2.3.0(default) 
gptl/3.6(default)                  superlu/3.0(default) 
gptl_pmpi/3.6(default)             superlu_dist/2.2(default) 
grace/5.1.21                       swig/1.3.36(default) 
grace/5.1.22(default)              szip/2.1(default) 
gromacs/3.3.3                      szip/2.1.tpb 
gromacs/4.0.5(default)             tau/2.17.2 
gsl/1.11                           tau/2.17.3 
gsl/1.11-dualcore                  tau/2.18.1(default) 
gsl/1.12                           tau/2.19 
gsl/1.12-dualcore(default)         tkdiff/4.1.4(default) 
gv/3.6.7(default)                  totalview/8.6.0-1(default) 
hdf5/1.6.7                         totalview/8.7.0-1 
hdf5/1.6.7_par                     trilinos/10.0.4 
hdf5/1.6.8                         trilinos/8.0.3 
hdf5/1.6.8_par                     trilinos/9.0.2(default) 
hdf5/1.8.1                         udunits/1.12.4 
hdf5/1.8.1_par                     udunits/1.12.9(default) 
hdf5/1.8.2                         umfpack/5.1.1(default) 
hdf5/1.8.2_par                     valgrind/3.3.1 
hpctoolkit/4.9.2(default)          valgrind/3.4.1(default) 
hypre/2.0.0(default)               vampir/2.1.0(default) 
idl/6.4(default)                   vampirtrace/5.8(default) 
imagemagick/6.4.2(default)         vim/7.1 
imagemagick/6.5.4                  vim/7.2(default) 
iota/0.2.1                         visit/1.11.1(default) 
iota/0.2.2(default)                wgrib/1.8.0.12o(default) 
java-jdk/1.5.0.06                  wgrib/1.8.0.13b 
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java-jdk/1.6.0.06(default)         workflow/fspdemo 
java-jre/1.5.0.06(default)         workflow/fullelm-2.0 
lammps/22Jul09                     workflow/fullelm-dart-1.0 
lammps/4Mar08                      workflow/gem-monitor-1.0 
lammps/May08(default)              workflow/gtc-monitor-1.0 
lapack/3.1.1(default)              workflow/s3d-monitor-1.0 
lapack/3.1.1-dualcore              workflow/xgc-monitor-2.0 
lapack/3.1.1-fPIC                  workflow/xgc-monitor-3.0(default) 
libgd/2.0.35(default)              xt-find/0.2.0(default) 
 
--------------------- /opt/cray/xt-asyncpe/3.5/modulefiles ---------------

------ 
xtpe-barcelona     xtpe-mc12          xtpe-shanghai 
xtpe-istanbul      xtpe-mc8           xtpe-target-native 
 

A.1.2  MODULES AVAILABLE IN Q4 

(as of September 8, 2010) 
---------------------------- /sw/tools/modulefiles -----------------------

------ 
mycraypat   nccsld      nccsld-test nccsld_dev  swadm       swtools 
 
---------------------------- /sw/tools/modulefiles -----------------------

------ 
mycraypat   nccsld      nccsld-test nccsld_dev  swadm       swtools 
 
--------------------- /opt/cray/xt-asyncpe/3.7/modulefiles ---------------

------ 
xtpe-barcelona     xtpe-mc12          xtpe-shanghai 
xtpe-istanbul      xtpe-mc8           xtpe-target-native 

 
------------------------------- /opt/modulefiles -------------------------

------ 
Base-opts/2.1.27HD 
Base-opts/2.1.27HD.lusrelsave 
Base-opts/2.1.29HD 
Base-opts/2.1.29HD.lusrelsave 
Base-opts/2.1.41HD 
Base-opts/2.1.41HD.lusrelsave 
Base-opts/2.1.50HD 
Base-opts/2.1.50HD.lusrelsave 
Base-opts/2.1.50HD_PS08 
Base-opts/2.1.50HD_PS08.lusrelsave 
Base-opts/2.2.27 
Base-opts/2.2.27.lusrelsave 
Base-opts/2.2.31 
Base-opts/2.2.31.lusrelsave 
Base-opts/2.2.31A 
Base-opts/2.2.31A.lusrelsave 
Base-opts/2.2.41 
Base-opts/2.2.41.lusrelsave 
Base-opts/2.2.41A(default) 
Base-opts/2.2.41A.lusrelsave 
PrgEnv-cray/1.0.0 
PrgEnv-cray/1.0.1(default) 
PrgEnv-gnu/2.1.27HD 
PrgEnv-gnu/2.1.29HD 
PrgEnv-gnu/2.1.41HD 
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PrgEnv-gnu/2.1.50HD 
PrgEnv-gnu/2.1.50HD_PS08 
PrgEnv-gnu/2.2.27 
PrgEnv-gnu/2.2.31 
PrgEnv-gnu/2.2.31A 
PrgEnv-gnu/2.2.41 
PrgEnv-gnu/2.2.41A(default) 
PrgEnv-intel/1.0.0(default) 
PrgEnv-pathscale/2.1.27HD 
PrgEnv-pathscale/2.1.29HD 
PrgEnv-pathscale/2.1.41HD 
PrgEnv-pathscale/2.1.50HD 
PrgEnv-pathscale/2.1.50HD_PS08 
PrgEnv-pathscale/2.2.27 
PrgEnv-pathscale/2.2.31 
PrgEnv-pathscale/2.2.31A 
PrgEnv-pathscale/2.2.41 
PrgEnv-pathscale/2.2.41A(default) 
PrgEnv-pgi/2.1.27HD 
PrgEnv-pgi/2.1.29HD 
PrgEnv-pgi/2.1.41HD 
PrgEnv-pgi/2.1.50HD 
PrgEnv-pgi/2.1.50HD_PS08 
PrgEnv-pgi/2.2.27 
PrgEnv-pgi/2.2.31 
PrgEnv-pgi/2.2.31A 
PrgEnv-pgi/2.2.41 
PrgEnv-pgi/2.2.41A(default) 
acml/4.0.1a 
acml/4.1.0 
acml/4.2.0 
acml/4.3.0(default) 
acml/4.4.0 
apprentice2/5.0.0 
apprentice2/5.0.1 
apprentice2/5.0.2(default) 
apprentice2/5.1.0 
blcr/0.7.3 
cce/7.0.0 
cce/7.0.1 
cce/7.0.2 
cce/7.0.3 
cce/7.0.4 
cce/7.1.0 
cce/7.1.1 
cce/7.1.2 
cce/7.1.3 
cce/7.1.4.111 
cce/7.1.5(default) 
cce/7.1.6 
cray/MySQL/5.0.64-1.0000.2342.16.1 
cray/account/1.0.0-2.0202.18612.42.3 
cray/audit/1.0.0-1.0202.19561.0 
cray/csa/3.0.0-1_2.0202.18623.63.1 
cray/job/1.5.5-0.1_2.0202.18632.46.1 
cray/projdb/1.0.0-1.0202.18638.45.1 
dwarf/8.2.0 
dwarf/8.4.0 
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dwarf/8.6.0 
dwarf/8.8.0 
dwarf/9.5.0 
dwarf/9.9.0(default) 
elf/0.8.10 
elf/0.8.12(default) 
fftw/2.1.5 
fftw/2.1.5.1 
fftw/3.1.1 
fftw/3.2.0 
fftw/3.2.1 
fftw/3.2.2 
fftw/3.2.2.1(default) 
fftw/3.2.2.1.bak 
gcc/4.1.2 
gcc/4.2.0.quadcore 
gcc/4.2.3 
gcc/4.2.4 
gcc/4.3.2 
gcc/4.4.1 
gcc/4.4.2(default) 
gcc/4.4.3 
gcc/4.4.4 
gcc-catamount/3.3 
gnet/2.0.5 
hdf5/1.8.2.2 
hdf5/1.8.2.3 
hdf5/1.8.3.0 
hdf5/1.8.3.1(default) 
hdf5/1.8.4.0 
hdf5/1.8.4.1 
hdf5-parallel/1.8.2.2 
hdf5-parallel/1.8.2.3 
hdf5-parallel/1.8.3.0 
hdf5-parallel/1.8.3.1 
hdf5-parallel/1.8.4.0 
hdf5-parallel/1.8.4.1(default) 
intel/11.1.046(default) 
intel/11.1.064 
iobuf/1.0.6(default) 
java/jdk1.6.0_17 
java/jdk1.6.0_20(default) 
libfast/1.0 
libfast/1.0.2 
libfast/1.0.3 
libfast/1.0.4 
libfast/1.0.5 
libfast/1.0.6 
libfast/1.0.7(default) 
libfast/orig.1.0.3 
libscifft-pgi/1.0.0(default) 
mazama/4.0.0(default) 
moab/5.2.3 
moab/5.2.4 
moab/5.3.0 
moab/5.3.3 
moab/5.3.6(default) 
modules/3.1.6 
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modules/3.1.6.5(default) 
mrnet/2.0.1.1(default) 
mrnet/2.2.0.1 
netcdf/3.6.2 
netcdf/4.0.0.2 
netcdf/4.0.0.3 
netcdf/4.0.1.0 
netcdf/4.0.1.1 
netcdf/4.0.1.2 
netcdf/4.0.1.3(default) 
netcdf-hdf5parallel/4.0.0.2 
netcdf-hdf5parallel/4.0.0.3 
netcdf-hdf5parallel/4.0.1.0 
netcdf-hdf5parallel/4.0.1.1 
netcdf-hdf5parallel/4.0.1.2 
netcdf-hdf5parallel/4.0.1.3(default) 
pathscale/3.2 
pathscale/3.2.99(default) 
petsc/2.3.3a 
petsc/3.0.0 
petsc/3.0.0.1 
petsc/3.0.0.10(default) 
petsc/3.0.0.2 
petsc/3.0.0.3 
petsc/3.0.0.4 
petsc/3.0.0.6 
petsc/3.0.0.8 
petsc/3.1.00 
petsc-complex/2.3.3a 
petsc-complex/3.0.0 
petsc-complex/3.0.0.1 
petsc-complex/3.0.0.10(default) 
petsc-complex/3.0.0.2 
petsc-complex/3.0.0.3 
petsc-complex/3.0.0.4 
petsc-complex/3.0.0.6 
petsc-complex/3.0.0.8 
petsc-complex/3.1.00 
pgi/10.0.0 
pgi/10.1.0 
pgi/10.2.0 
pgi/10.3.0(default) 
pgi/10.4.0 
pgi/10.5.0 
pgi/6.2.5 
pgi/7.0.7 
pgi/7.1.6 
pgi/7.2.3 
pgi/7.2.4 
pgi/7.2.5 
pgi/8.0.1 
pgi/8.0.2 
pgi/8.0.3 
pgi/8.0.4 
pgi/8.0.5 
pgi/8.0.6 
pgi/9.0.1 
pgi/9.0.2 
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pgi/9.0.3 
pgi/9.0.4 
pkgconfig/0.15.0(default) 
torque/2.3.2-snap.200807092141 
torque/2.4.1b1-snap.200905191614(default) 
xt-asyncpe/1.0c 
xt-asyncpe/1.1 
xt-asyncpe/1.2 
xt-asyncpe/2.0 
xt-asyncpe/2.0.34 
xt-asyncpe/2.1 
xt-asyncpe/2.3 
xt-asyncpe/2.4 
xt-asyncpe/2.5 
xt-asyncpe/3.0 
xt-asyncpe/3.1 
xt-asyncpe/3.1.20 
xt-asyncpe/3.2 
xt-asyncpe/3.3 
xt-asyncpe/3.4 
xt-asyncpe/3.5 
xt-asyncpe/3.7(default) 
xt-asyncpe/3.8 
xt-asyncpe/3.9 
xt-asyncpe/4.0 
xt-atp/1.0(default) 
xt-boot/2.1.27HD 
xt-boot/2.1.29HD 
xt-boot/2.1.41HD 
xt-boot/2.1.50HD 
xt-boot/2.1.50HD_PS08 
xt-boot/2.2.27 
xt-boot/2.2.31 
xt-boot/2.2.31A 
xt-boot/2.2.41 
xt-boot/2.2.41A 
xt-catamount/2.1.27HD 
xt-catamount/2.1.29HD 
xt-catamount/2.1.41HD 
xt-catamount/2.1.50HD 
xt-catamount/2.1.50HD_PS08 
xt-craypat/5.0.0 
xt-craypat/5.0.1 
xt-craypat/5.0.2(default) 
xt-craypat/5.1.0 
xt-lgdb/1.2(default) 
xt-libc/2.1.27HD 
xt-libc/2.1.29HD 
xt-libc/2.1.41HD 
xt-libc/2.1.50HD 
xt-libc/2.1.50HD_PS08 
xt-libsci/10.2.1 
xt-libsci/10.3.1 
xt-libsci/10.3.5 
xt-libsci/10.3.6 
xt-libsci/10.3.8 
xt-libsci/10.3.8.1 
xt-libsci/10.3.9 
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xt-libsci/10.4.0 
xt-libsci/10.4.1 
xt-libsci/10.4.2 
xt-libsci/10.4.3 
xt-libsci/10.4.4(default) 
xt-libsci/10.4.5 
xt-lustre-ss/2.1.27HD_1.6.5 
xt-lustre-ss/2.1.29.HD_ORNL.nic1_1.6.5 
xt-lustre-ss/2.1.29HD_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic10_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic11_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic12_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic2_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic5_1.6.5 
xt-lustre-ss/2.1.29HD_ORNL.nic6_1.6.5 
xt-lustre-ss/2.1.41HD_1.6.5 
xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8062_1.6.5 
xt-lustre-ss/2.1.50HD.PS04.lus.1.6.5.steve.8072_1.6.5 
xt-lustre-ss/2.1.50HD.PS08.lus.1.6.5.steve.8099_1.6.5 
xt-lustre-ss/2.1.50HD.PS08.lus.1.6.5.steve.8119_1.6.5 
xt-lustre-ss/2.1.50HD_1.6.5 
xt-lustre-ss/2.1.50HD_PS04_1.6.5 
xt-lustre-ss/2.1.50HD_PS08_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic12_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic2_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic30_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic3_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic40_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic51_1.6.5 
xt-lustre-ss/2.1.UP00_ORNL.nic52_1.6.5 
xt-lustre-ss/2.2.27.lus.1.6.5.steve.8154_1.6.5 
xt-lustre-ss/2.2.27.lus.1.6.5.steve.8182_1.6.5 
xt-lustre-ss/2.2.27.lus.1.6.5.steve.8189_1.6.5 
xt-lustre-ss/2.2.27_1.6.5 
xt-lustre-ss/2.2.31.lus.1.6.5.steve.8211_1.6.5 
xt-lustre-ss/2.2.31A.lus.1.6.5.steve.8259_1.6.5 
xt-lustre-ss/2.2.31A_1.6.5 
xt-lustre-ss/2.2.31_1.6.5 
xt-lustre-ss/2.2.41A_1.6.5 
xt-lustre-ss/2.2.41_1.6.5 
xt-lustre-ss/2.2.UP01.lus.1.6.5.steve.8265_1.6.5 
xt-mpt/2.1.27HD 
xt-mpt/2.1.29HD 
xt-mpt/2.1.41HD 
xt-mpt/2.1.50HD 
xt-mpt/2.1.50HD_PS08 
xt-mpt/3.0.1 
xt-mpt/3.0.2 
xt-mpt/3.0.4 
xt-mpt/3.1.0 
xt-mpt/3.1.0.4 
xt-mpt/3.1.0.6 
xt-mpt/3.1.0.7 
xt-mpt/3.1.1 
xt-mpt/3.1.2 
xt-mpt/3.2.0 
xt-mpt/3.3.0 
xt-mpt/3.4.0 
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xt-mpt/3.4.1 
xt-mpt/3.4.2 
xt-mpt/3.5.0 
xt-mpt/3.5.1 
xt-mpt/4.0.0(default) 
xt-mpt/4.0.2 
xt-mpt/4.0.3 
xt-mpt/4.1.0.1 
xt-mpt/4.1.1 
xt-mpt/5.0.0 
xt-os/2.1.27HD 
xt-os/2.1.29HD 
xt-os/2.1.41HD 
xt-os/2.1.50HD 
xt-os/2.1.50HD_PS08 
xt-os/2.2.27 
xt-os/2.2.31 
xt-os/2.2.31A 
xt-os/2.2.41 
xt-os/2.2.41A 
xt-papi/3.6 
xt-papi/3.6.1a 
xt-papi/3.6.2 
xt-papi/3.6.2.2 
xt-papi/3.7.2(default) 
xt-papi/3.7.2.0.5 
xt-pe/2.1.27HD 
xt-pe/2.1.29HD 
xt-pe/2.1.41HD 
xt-pe/2.1.50HD 
xt-pe/2.1.50HD_PS08 
xt-pe/2.2.27 
xt-pe/2.2.31 
xt-pe/2.2.31A 
xt-pe/2.2.41 
xt-pe/2.2.41A 
xt-service/2.1.27HD 
xt-service/2.1.29HD 
xt-service/2.1.41HD 
xt-service/2.1.50HD 
xt-service/2.1.50HD_PS08 
xt-service/2.2.27 
xt-service/2.2.31 
xt-service/2.2.31A 
xt-service/2.2.41 
xt-service/2.2.41A 
xtgdb/1.0.0(default) 
xtpe-target-catamount 
xtpe-target-cnl 
 
------------------------------ /opt/modules/3.1.6 ------------------------

------ 
modulefiles/modules/dot         modulefiles/modules/modules 
modulefiles/modules/module-cvs  modulefiles/modules/null 
modulefiles/modules/module-info modulefiles/modules/use.own 
 
----------------------------- /sw/xt5/modulefiles ------------------------

------ 
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DefApps                            lapack/3.1.1-dualcore 
MiscApps                           lapack/3.1.1-fPIC 
adios/0.9.10                       libgd/2.0.35(default) 
adios/0.9.10_phdf5                 liblut/0.9.6 
adios/0.9.12                       liblut/0.9.7 
adios/0.9.13                       liblut/0.9.8 
adios/1.0                          liblut/0.9.9(default) 
adios/1.1.0                        liblut/1.0.0 
adios/1.1.amr1                     libxml2/2.7.6(default) 
adios/1.2                          libxslt/1.1.26(default) 
adios/1.2.1(default)               lsq/0.1.0 
adios/1.2_jc                       m4/1.4.11(default) 
arpack/2008.03.11(default)         makedepf90/2.8.8(default) 
atlas/3.8.2                        matlab/7.5 
atlas/3.8.2-fPIC-dualcore          matlab/7.7 
atlas/3.8.3                        matlab/7.8(default) 
atlas/3.8.3-fPIC-dualcore(default) mercurial/1.0.2 
autoconf/2.63(default)             mercurial/1.3(default) 
automake/1.10.1(default)           metis/4.0(default) 
automake/1.11.1                    mpe2/1.0.6(default) 
aztec/2.1(default)                 mpip/3.1.2(default) 
banner/1.3.2(default)              mumps/4.7.3_par(default) 
blas/ref(default)                  mumps/4.9_par 
blas/ref-dualcore                  mxml/2.6(default) 
blas-goto/1.0                      namd/2.6 
blas-goto/2.0(default)             namd/2.7b1(default) 
boost/1.44.0                       ncl/5.0.0(default) 
bugget/2.0(default)                nco/3.9.4(default) 
cdo/1.3.1                          nco/3.9.8 
cdo/1.3.2(default)                 ncview/1.93c(default) 
cmake/2.6.1(default)               ncview/1.93g 
cmake/2.6.2                        ncview/1.93g-netcdf4 
cmake/2.6.4                        nedit/5.5(default) 
cmake/2.8.0                        netcdf/3.6.2 
cpmd/3.13.1                        netcdf/4.0.0 
cpmd/3.13.2(default)               netcdf/4.0.0_par 
ddt/2.4.1                          netcdf/4.1 
ddt/2.4.1-11140                    netcdf/4.1.1 
ddt/2.5.1-12323(default)           netcdf/4.1.1_par 
doxygen/1.5.6                      netcdf/4.1_par 
doxygen/1.5.8                      nose/0.10.4(default) 
doxygen/1.5.9                      ompi/1.4a1-dtr103 
doxygen/1.6.1(default)             ompi/1.4a1r21772 
dragon/1.0a(default)               ompi/1.7a1r22177 
emacs/23.1(default)                ompi/1.7a1r22229 
esmf/4.0.0r_O                      ompi/1.7a1r22760 
esmf/4.0.0r_g                      ompi/DT/routed-pgi-uos 
esmf/4.0.0rp1_O(default)           ompi/DT/routing-pgi 
esmf/4.0.0rp1_g                    ompi/DT/routing-pgi-uos 
esmf/4.0.0rp2_O                    ompi/experimental(default) 
esmf/4.0.0rp2_g                    ompi/standard 
ferret/6.1(default)                p-netcdf/1.0.2 
ferret/6.3                         p-netcdf/1.0.3(default) 
fftpack/5-r4i4                     p-netcdf/1.1.1 
fftpack/5-r8i4                     parmetis/3.1 
fftpack/5-r8i8(default)            parmetis/3.1.1(default) 
fftw/3.1.2                         perl-gd/2.44(default) 
fftw/3.1.2-dualcore                petsc/2.3.3-debug 
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fftw/3.2                           petsc/3.0.0-custom 
fftw/3.2-dualcore                  petsc/3.0.0-debug 
fftw/3.2.1                         petsc-complex/2.3.3-debug 
fftw/3.2.2                         petsc-complex/3.0.0-debug 
fftw/3.2.2-dualcore                pgplot/5.2(default) 
fpmpi/1.0                          pltar/0.8.9(default) 
fpmpi/1.1(default)                 pltar/0.9.0 
fpmpi_papi/1.0                     pspline/1.0(default) 
fpmpi_papi/1.1(default)            python/2.5.2 
gamess/2008Mar04                   python/2.5.2-netcdf(default) 
gamess/2009Jan12(default)          qt/4.3.4(default) 
ghostscript/8.64(default)          ruby/1.8.7 
git/1.6.0                          ruby/1.9.1(default) 
git/1.6.0.4                        silo/4.7(default) 
git/1.6.2.4                        silo/test 
git/1.6.4(default)                 spdcp/0.3.6 
globalarrays/4.0.8(default)        spdcp/0.3.7 
globalarrays/4.1.1                 spdcp/0.3.8(default) 
globalarrays/4.2                   spdcp/0.3.9 
globus/4.2.1(default)              sprng/2.0b(default) 
gmake/3.81(default)                stagesub/1.0.2 
gnuplot/4.2.3                      stagesub/1.0.3(default) 
gnuplot/4.2.4(default)             subversion/1.4.6 
gnuplot/4.2.5                      subversion/1.5.0(default) 
gptl/3.4.1                         sundials/2.3.0(default) 
gptl/3.4.3                         superlu/3.0(default) 
gptl/3.4.7                         superlu_dist/2.2(default) 
gptl/3.5                           swig/1.3.36(default) 
gptl/3.5.1                         szip/2.1(default) 
gptl/3.5.2                         szip/2.1.tpb 
gptl/3.6(default)                  tau/2.17.2 
gptl/3.6.3                         tau/2.17.3 
gptl_pmpi/3.6(default)             tau/2.18.1(default) 
gptl_pmpi/3.6.3                    tau/2.19 
grace/5.1.21                       tcl_tk/8.5.8(default) 
grace/5.1.22(default)              tkdiff/4.1.4(default) 
gromacs/3.3.3                      totalview/8.6.0-1(default) 
gromacs/4.0.5(default)             totalview/8.7.0-1 
gsl/1.11                           trilinos/10.0.4 
gsl/1.11-dualcore                  trilinos/10.2.2 
gsl/1.12                           trilinos/10.4.0 
gsl/1.12-dualcore(default)         trilinos/8.0.3 
gv/3.6.7(default)                  trilinos/9.0.2(default) 
hdf5/1.6.7                         udunits/1.12.4 
hdf5/1.6.7_par                     udunits/1.12.9(default) 
hdf5/1.6.8                         umfpack/5.1.1(default) 
hdf5/1.6.8_par                     valgrind/3.3.1 
hdf5/1.8.1                         valgrind/3.4.1(default) 
hdf5/1.8.1_par                     vampir/2.1.0 
hdf5/1.8.2                         vampir/2.2.0(default) 
hdf5/1.8.2_par                     vampirtrace/5.10b100802 
hpctoolkit/4.9.2(default)          vampirtrace/5.8 
hypre/2.0.0(default)               vampirtrace/5.8.2 
hypre/2.4.0b                       vampirtrace/5.8_noatime 
hypre/2.4.0b-craypat               vampirtrace/5.9(default) 
hypre/2.4.0b-debug                 vampirtrace/5.9-beta 
idl/6.4(default)                   vampirtrace/5.9b100716 
imagemagick/6.4.2(default)         vim/7.1 
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imagemagick/6.5.4                  vim/7.2(default) 
iota/0.2.1                         visit/1.11.1(default) 
iota/0.2.2(default)                vmd/1.8.7(default) 
iota/0.2.3                         wgrib/1.8.0.12o(default) 
iota/0.2.4                         wgrib/1.8.0.13b 
java/1.5.0.06                      workflow/fspdemo 
java/1.6.0.06                      workflow/fullelm-2.0 
java-jdk/1.5.0.06                  workflow/fullelm-dart-1.0 
java-jdk/1.6.0.06(default)         workflow/gem-monitor-1.0 
java-jre/1.5.0.06(default)         workflow/gtc-monitor-1.0 
lammps/22Jul09                     workflow/s3d-monitor-1.0 
lammps/4Mar08                      workflow/xgc-monitor-2.0 
lammps/9Sep10                      workflow/xgc-monitor-3.0(default) 
lammps/May08(default)              workflow/xgc-monitor-3.1 
lapack/3.1.1(default)              xt-find/0.2.0(default) 
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A.2 MACHINE EVENT DATA COLLECTION ROUTINES 

 

The routines presented in this appendix were used by the FY10 applications to access machine 

hardware events captured by PAPI during process execution of the benchmarks described in the report. 
These particular routines were designed to be invoked from Fortran source code on the target architecture. 

The API of each routine is described briefly, a compilation is presented, and an example user code that 

calls the routines is presented along with the outcome of a small sample problem. 
 

A.2.1  KRP MACHINE EVENT DATA COLLECTION API 

 

krp-init.c :  
void krp_init_( int * iam , int * hw_counters , long long int * rcy  

, long long int * rus , long long int * ucy , long long int * uus ) 
 

 *iam , (in) the calling MPI process ID, (out) unchanged 

 *hw_counters, (in) the number of event hardware counters on the target chipset, (out) unchanged 

 *rcy, (in) ignored, (out) current reading of real system cycles 
 *rus, (in) ignored, (out) current reading of real microseconds 

 *ucy, (in) ignored, (out) current reading of user (virtual) cycles 

 *uus, (in) ignored, (out) current reading of user (virtual) microseconds 

 

The process *iam==0 returns specific hardware information such as 
number of processor cores in the SMP node, clock speed of the 
processors, and some chipset vendor and model specific information. 
Calling the routine marks (initializes) the cycle values *rcy, *ucy 
and the internal clock values *rus, *uus, and informs PAPI to monitor 
the following events: "PAPI_TOT_INS", "PAPI_FP_INS", "PAPI_L2_DCM".  

 

krp-rpt-init.c :  
void krp_rpt_init_( int * iam , MPI_Fint * commf , int * hw_counters 

, long long int * rcy  , long long int * rus , long long int * ucy , 
long long int * uus ) 

 

 *iam , (in) the calling MPI process ID, (out) unchanged 

 *commf, (in) MPI communicator of the calling MPI processes, (out) unchanged 

 *hw_counters, (in) the number of event hardware counters on the target chipset, (out) unchanged 

 *rcy, (in) previously initialized real system cycles, (out) current reading of real system cycles  

 *rus, (in) previously initialized real microseconds, (out) current reading of real microseconds 

 *ucy, (in) previously initialized user (virtual) cycles, (out) current reading of user (virtual) cycles 

 *uus, (in) previously initialized user (virtual) microseconds, (out) current reading of user (virtual) 

microseconds 

 

The PAPI event information collected by each MPI process in *commf 
since the previous call to either krp_init() or krp_rpt_init() 
subroutines is gathered to *iam==0. The gathering process sums the 
collected values for each PAPI event and prints the total value and 
its local value for each monitored event to STDOUT. Elapsed cycle and 
microsecond count differences are formed by taking the difference in 
the values passed *rcy, *ucy, *rus, *uus against the current values on 
the chip. Process *iam==0 gathers these differences and searches for 
the largest value for each observable and prints this number to STDOUT 
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–it is the slowest process in the set of processes that dictates the 
overall parallel performance. All the PAPI events and clock 
information are turned back on and the calling process’ local values 
are set to the current chip values for future reference. 

 

krp-rpt-init-sum.c : 
void krp_rpt_init_sum_( int * iam , MPI_Fint * commf , int * 

hw_counters , long long int * rcy  , long long int * rus , long long 
int * ucy , long long int * uus , long int * rt_rus , long int * 
rt_ins , long int * rt_fp , long int * rt_dcm ) 

 *iam , (in) the calling MPI process ID, (out) unchanged 

 *commf, (in) MPI communicator of the calling MPI processes, (out) unchanged 
 *hw_counters, (in) the number of event hardware counters on the target chipset, (out) unchanged 

 *rcy, (in) previously initialized real system cycles, (out) current reading of real system cycles  

 *rus, (in) previously initialized real microseconds, (out) current reading of real microseconds 

 *ucy, (in) previously initialized user (virtual) cycles, (out) current reading of user (virtual) cycles 

 *uus, (in) previously initialized user (virtual) microseconds, (out) current reading of user (virtual) 

microseconds 

 *rt_rus, (in) (if *iam==0 then running total of real microseconds for the processes in *commf) (if 

*iam !=0 then running total of *iam’s real microseconds), (out) (if *iam==0 then the updated 

running total of  real microseconds for the processes in *commf) (if *iam != 0 then the updated 

running total of *iam’s real microseconds) 

 *rt_ins, (in) (if *iam==0 then running total of retired instructions for the processes in *commf) (if 
*iam !=0 then running total of *iam’s retired instructions), (out) (if *iam==0 then the updated 

running total of retired instructions for the processes in *commf) (if *iam != 0 then the updated 

running total of *iam’s retired instructions) 

 *rt_fp, (in) (if *iam==0 then running total of floating point instructions executed for the processes 

in *commf) (if *iam !=0 then running total of *iam’s floating point instructions executed), (out) (if 

*iam==0 then the updated running total of floating point instructions executed for the processes in 

*commf) (if *iam != 0 then the updated running total of *iam’s floating point instructions executed) 

 *rt_dcm, (in) (if *iam==0 then running total of level 2 data cache misses for the processes in 

*commf) (if *iam !=0 then running total of *iam’s level 2 data cache misses), (out) (if *iam==0 

then the updated running total of level 2 data cache misses for the processes in *commf) (if *iam != 

0 then the updated running total of *iam’s level 2 data cache misses) 

 

The PAPI event information collected by each MPI process in *commf 
since the previous call to either krp_init(),krp_rpt_init() or 
krp_rpt_init_sum() subroutines is gathered to *iam==0. The gathering 
process sums the collected values for each PAPI event and prints the 
total value and its local value for each monitored event to STDOUT. 
Elapsed cycle and microsecond count differences are formed by taking 
the difference in the values passed *rcy, *ucy, *rus, *uus against the 
current values on the chip. Process *iam==0 gathers these differences 
and searches for the largest value for each observable and prints this 
number to STDOUT –it is the slowest process in the set of processes 
that dictates the overall parallel performance. In addition, process 
*iam==0 maintains a running total for a specific collection of events 
over each process in *commf: total retired instructions, total 
floating point instructions executed, total number of level 2 data 
cache misses, and wall time (real) in microseconds. All processes in 
*commf \ *iam==0 maintain a local running sum over each of these 
events as well. All the PAPI events and clock information are turned 
back on and the calling process’ local values are set to the current 
chip values for future reference. The routine is intended to be used 
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to isolate phases of execution within loop structures but has other 
obvious uses –i.e. when the loop limits are a single iteration.  

 

krp-rpt.c : 
void krp_rpt_( int * iam , MPI_Fint * commf , int * hw_counters , 

long long int * rcy  , long long int * rus , long long int * ucy , 
long long int * uus ) 

 
 *iam , (in) the calling MPI process ID, (out) unchanged 

 *commf, (in) MPI communicator of the calling MPI processes, (out) unchanged 

 *hw_counters, (in) the number of event hardware counters on the target chipset, (out) unchanged 

 *rcy, (in) previously initialized real system cycles, (out) unchanged 

 *rus, (in) previously initialized real microseconds, (out) unchanged 

 *ucy, (in) previously initialized user (virtual) cycles, (out) unchanged 

 *uus, (in) previously initialized user (virtual) microseconds, (out) unchanged 

 

The PAPI event information collected by each MPI process in *commf 
since the previous call to either krp_init(), krp_rpt_init(), or 
krp_rpt_init_sum() subroutines is gathered to *iam==0. The gathering 
process sums the collected values for each PAPI event and prints the 
total value and its local value for each monitored event to STDOUT. 
Elapsed cycle and microsecond count differences are formed by taking 
the difference in the values passed *rcy, *ucy, *rus, *uus against the 
current values on the chip. Process *iam==0 gathers these differences 
and searches for the largest value for each observable and prints this 
number to STDOUT –it is the slowest process in the set of processes 
that dictates the overall parallel performance. The PAPI event 
counters are stopped. 

 
 

A.2.2  KRP USE EXAMPLE 

 

The sample user code is intended to demonstrate the use of the KRP wrapper routines only – please do not 

execute the binary for this program on a large MPI allocation. The program is designed to execute two different 

phases inside a loop structure and both phases compute a simple nested loop matrix multiply routine (the 

implementation is not even checked for correctness) such that C  a A B + b C. where a and b are complex scalars 

and A, B, and C are complex matrices composed of random coefficients in [(-.5,-.5),(.5,.5)]. The user supplies the 

number of loop iterations and the dimensions of the matrices. 

 

f-usr-krp.f90 Listing : 

 
! kenneth.roche@pnl.gov ; k8r@uw.edu  
 
! fortran code to demo interface to krp_*() machine event collection routines -PAPI wrappers 
! intended for fy10 GPRA-PMM applications  
 
!--------------------------------------------------------------------------------------------

------ 
! main () {}  
!--------------------------------------------------------------------------------------------

------ 
 
program f_usr_krp 
 
  implicit none 
 
  include 'mpif.h' 
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  integer, parameter  :: DPC = kind( ( 1.0D0 , 1.0D0 ) ) 
 
  ! mpi foo 
 
  integer :: ip , np  
 
  ! problem related foo  
 
  integer :: i , j , k , ierr , isd 
 
  integer :: l , m , n , ll , mm , nn , its , nits 
 
  complex( DPC ) , allocatable , dimension( : ) :: a , b , c ! for complex mm multiply -

dimension n                    
 
  complex( DPC ) , allocatable , dimension( : ) :: x , y , z ! for complex mm multiply -

dimension m 
 
  complex( DPC ) :: alpha , beta , ztmp , ztmp_ 
 
  ! papi related foo  
 
  integer :: hwc ! number of hardware counters  
 
  integer*8 :: krp_rus , krp_rcy , krp_uus , krp_ucy  
 
  integer*8 :: t_a , ins_a , fp_a , dcm_a  
 
  integer*8 :: t_b , ins_b , fp_b , dcm_b  
 
! 
! 
 
  call MPI_Init( ierr ) !ierr not checked :: FIXME 
 
  call MPI_Comm_rank( MPI_COMM_WORLD , ip , ierr ) 
 
  call MPI_Comm_size( MPI_COMM_WORLD , np , ierr ) 
 
  if ( ip .eq. 0 ) then 
   
     print * , 'm l n'  
 
     read * , m , l , n  
 
     print * , 'm2 l2 n2'  
 
     read * , mm , ll , nn 
  
     print * , 'nits'  
 
     read * , nits 
 
  endif 
 
  krp_rus = 0 
  krp_rcy = 0 
  krp_uus = 0 
  krp_ucy = 0 
 
  call krp_init( ip , hwc , krp_rcy , krp_rus , krp_ucy , krp_uus ) 
 
  call MPI_Bcast( m , 1 , MPI_INTEGER , 0 , MPI_COMM_WORLD , ierr ) 
 
  call MPI_Bcast( l , 1 , MPI_INTEGER , 0 , MPI_COMM_WORLD , ierr ) 
 
  call MPI_Bcast( n , 1 , MPI_INTEGER , 0 , MPI_COMM_WORLD , ierr ) 
 
  call MPI_Bcast( mm , 1 , MPI_INTEGER , 0 , MPI_COMM_WORLD , ierr ) 
 
  call MPI_Bcast( ll , 1 , MPI_INTEGER , 0 , MPI_COMM_WORLD , ierr ) 
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  call MPI_Bcast( nn , 1 , MPI_INTEGER , 0 , MPI_COMM_WORLD , ierr ) 
 
  call MPI_Bcast( nits , 1 , MPI_INTEGER , 0 , MPI_COMM_WORLD , ierr ) 
 
  ! buffers for C <- a A B + b C 
  ! if A[m,l], B[l,m] , C[m,n] then aAB + bC has complexity :: 8mnl + 13mn 
  ! (ask me if this is not clear -is trivial) 
   
  allocate ( a( m * l ) , STAT = ierr ) 
 
  if ( ierr .ne. 0 ) then 
 
     write( * , * ) 'ERROR: cannot ALLOCATE a()' 
 
  endif 
 
  allocate ( b( l * n ) , STAT = ierr ) 
 
  if ( ierr .ne. 0 ) then 
 
     write( * , * ) 'ERROR: cannot ALLOCATE b()' 
 
  endif 
 
  allocate ( c( m * n ) , STAT = ierr ) 
 
  if ( ierr .ne. 0 ) then 
 
     write( * , * ) 'ERROR: cannot ALLOCATE c()' 
 
  endif 
 
  allocate ( x( mm * ll ) , STAT = ierr ) 
 
  if ( ierr .ne. 0 ) then 
 
     write( * , * ) 'ERROR: cannot ALLOCATE x()' 
 
  endif 
 
  allocate ( y( ll * nn ) , STAT = ierr ) 
 
  if ( ierr .ne. 0 ) then 
 
     write( * , * ) 'ERROR: cannot ALLOCATE y()' 
 
  endif 
 
  allocate ( z( mm * nn ) , STAT = ierr ) 
 
  if ( ierr .ne. 0 ) then 
 
     write( * , * ) 'ERROR: cannot ALLOCATE z()' 
 
  endif 
 
  ! initialize the data 
 
  if ( ip .eq. 0 ) print * , '.... initialize the arrays' 
 
  isd = 7 
 
  call get_rnd( m * l , a , isd )  
 
  call get_rnd( l * n , b , isd )  
 
  call get_rnd( m * n , c , isd )  
   
  isd = 3 
 
  call get_rnd( mm * ll , x , isd )  
 
  call get_rnd( ll * nn , y , isd )  
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  call get_rnd( mm * nn , z , isd )  
 
  alpha = ( 1.25D0 , -1.D0 ) 
 
  beta = ( -.25D0 , .5D0 ) 
 
  if ( ip .eq. 0 ) print * , '.... entering loop' 
 
  t_a = 0 
  ins_a = 0 
  fp_a = 0 
  dcm_a = 0 
 
  t_b = 0 
  ins_b = 0 
  fp_b = 0 
  dcm_b = 0 
 
  call krp_rpt_init( ip , MPI_COMM_WORLD , hwc , krp_rcy , krp_rus , krp_ucy , krp_uus ) 
   
  do its = 1 , nits ! this is the loop over which we wish to accumulate results 
      
     if ( ip .eq. 0 ) print * , '.... entering phase 1 work' 
 
     ! phase 1 work - zgemm(m,l,n) -just choose a permutation -don't care about performance 

here 
      
     do i = 1 , m  
         
        do j = 1 , n  
            
           do k = 1 , l 
               
              ztmp = ztmp + a( i + ( k - 1 ) * m ) * b( k + ( j - 1 ) * l ) 
               
           end do 
            
           ztmp_ = beta * c( i + ( j - 1 ) * m )  
            
           c( i + ( j - 1 ) * m ) = alpha * ztmp + ztmp_ 
            
           ztmp = ( 0.D0 , 0.D0)  
            
        end do 
         
     end do 
 
     call krp_rpt_init_sum( ip , MPI_COMM_WORLD , hwc , krp_rcy , krp_rus , krp_ucy , krp_uus 

, t_a , ins_a , fp_a , dcm_a ) 
 
     if ( ip .eq. 0 ) print * , '.... entering phase 2 work' 
 
     ! phase 2 work - zgemm(mm,ll,nn)  
      
     do i = 1 , mm  
         
        do j = 1 , nn  
            
           do k = 1 , ll 
               
              ztmp = ztmp + x( i + ( k - 1 ) * mm ) * y( k + ( j - 1 ) * ll ) 
               
           end do 
            
           ztmp_ = beta * z( i + ( j - 1 ) * mm )  
            
           z( i + ( j - 1 ) * mm ) = alpha * ztmp + ztmp_ 
            
           ztmp = ( 0.D0 , 0.D0)  
            
        end do 
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     end do 
 
     call krp_rpt_init_sum( ip , MPI_COMM_WORLD , hwc , krp_rcy , krp_rus , krp_ucy , krp_uus 

, t_b , ins_b , fp_b , dcm_b ) 
 
  enddo !end iterations 
 
  ! when we are using the aggregation / in-iteration routine _rpt_init_sum() then ... 
   
  if ( ip == 0 ) then ! ... report findings 
     print * , 'PREDICTION P1( TOTAL FP_OPS ) = PEs * nits * (8.m.n.l + 13.m.n)'  
     print *, '== ' , np * nits * ( 8 * m * n * l + 13 * m * n ) 
     print *, ' '  
     print * , 'PREDICTION P1( FP_OPS ) = PEs * nits * (8.mm.nn.ll + 13.mm.nn)'  
     print *, '== ' , np * nits * ( 8 * mm * nn * ll + 13 * mm * nn ) 
     print * , '                    time                   ins                       fp                   

dm ' 
     print '("P-1:", 4(2x,I20) )' , t_a , ins_a , fp_a , dcm_a    
     print '("P-2:", 4(2x,I20) )' , t_b , ins_b , fp_b , dcm_b    
  endif 
 
  call krp_rpt( ip , MPI_COMM_WORLD , hwc , krp_rcy , krp_rus , krp_ucy , krp_uus ) 
 
  deallocate( a , b , c ) 
 
  deallocate( x , y , z ) 
 
  call MPI_Barrier( MPI_COMM_WORLD , ierr ) 
 
  call MPI_Finalize( ierr ) 
 
end program f_usr_krp 

 

Compilation on Target Architecture : 
roche@jaguarpf-login1:/tmp/work/roche/GPRA-PMM-q4> module load xt-papi 
 
roche@jaguarpf-login1:/tmp/work/roche/GPRA-PMM-q4> cat compile.f-usr-krp 
date ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init-sum.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt.c ; 
cc -c get-crnd.c ; 
ftn -c f-usr-krp.f90 ; 
ftn -o xfusr-krp f-usr-krp.o get-crnd.o krp-init.o krp-rpt-init.o krp-rpt-

init-sum.o krp-rpt.o ${PAPI_POST_LINK_OPTS} -lsci -lpthread -lm 
 
roche@jaguarpf-login1:/tmp/work/roche/GPRA-PMM-q4> rm -f *.o x* core* ; 

source compile.f-usr-krp 
Fri Jul 16 03:15:11 EDT 2010 
/opt/cray/xt-asyncpe/3.7/bin/cc: INFO: linux target is being used 
/opt/cray/xt-asyncpe/3.7/bin/cc: INFO: linux target is being used 
/opt/cray/xt-asyncpe/3.7/bin/cc: INFO: linux target is being used 
/opt/cray/xt-asyncpe/3.7/bin/cc: INFO: linux target is being used 
/opt/cray/xt-asyncpe/3.7/bin/cc: INFO: linux target is being used 
/opt/cray/xt-asyncpe/3.7/bin/ftn: INFO: linux target is being used 
/opt/cray/xt-asyncpe/3.7/bin/ftn: INFO: linux target is being used 
 

Execution / Output of Example User Code on Target Architecture : 
 
roche@jaguarpf-login1:/tmp/work/roche/GPRA-PMM-q4> time aprun -n 10 ./xfusr-krp 
 m l n 
32 32 32 
 m2 l2 n2 
128 128 128 
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 nits 
3 
        Initialize PAPI Hardware Event Profilers 
                TotPEs()[12] 
                Mhz[2600] 
                nCPU-SMPnode()[12] 
                nSMPnodes()[1] 
                        vendor string cpu[AuthenticAMD} 
                        model string cpu[6-Core AMD Opteron(tm) Processor 23 (D0)} 
                        model number[16] 
 
 .... initialize the arrays 
 .... entering loop 
 
        PAPI_TOT_INS :  Tot[ 551908899299 ]     Rt[ 6191071 ] 
        PAPI_FP_INS :   Tot[ 2088960 ]  Rt[ 208896 ] 
        PAPI_L2_DCM :   Tot[ 446747839 ]        Rt[ 21590 ] 
        PAPI_real_cyc = 49135717298     PAPI_real_usec = 18898353 
        PAPI_user_cyc = 49140000000     PAPI_user_usec = 18900000 
 .... entering phase 1 work 
 
        PAPI_TOT_INS :  Tot[ 11312331 ] Rt[ 1132323 ] 
        PAPI_FP_INS :   Tot[ 2764800 ]  Rt[ 276480 ] 
        PAPI_L2_DCM :   Tot[ 5384 ]     Rt[ 565 ] 
        PAPI_real_cyc = 1874530 PAPI_real_usec = 721 
        PAPI_user_cyc = 0       PAPI_user_usec = 0 
 .... entering phase 2 work 
 
        PAPI_TOT_INS :  Tot[ 699941124 ]        Rt[ 69995205 ] 
        PAPI_FP_INS :   Tot[ 170065920 ]        Rt[ 17006592 ] 
        PAPI_L2_DCM :   Tot[ 205503 ]   Rt[ 21373 ] 
        PAPI_real_cyc = 58440388        PAPI_real_usec = 22477 
        PAPI_user_cyc = 52000000        PAPI_user_usec = 20000 
 .... entering phase 1 work 
 
        PAPI_TOT_INS :  Tot[ 11312315 ] Rt[ 1132325 ] 
        PAPI_FP_INS :   Tot[ 2764800 ]  Rt[ 276480 ] 
        PAPI_L2_DCM :   Tot[ 5365 ]     Rt[ 562 ] 
        PAPI_real_cyc = 1931247 PAPI_real_usec = 742 
        PAPI_user_cyc = 26000000        PAPI_user_usec = 10000 
 .... entering phase 2 work 
 
        PAPI_TOT_INS :  Tot[ 699941133 ]        Rt[ 69995205 ] 
        PAPI_FP_INS :   Tot[ 170065920 ]        Rt[ 17006592 ] 
        PAPI_L2_DCM :   Tot[ 205407 ]   Rt[ 21287 ] 
        PAPI_real_cyc = 58265279        PAPI_real_usec = 22410 
        PAPI_user_cyc = 52000000        PAPI_user_usec = 20000 
 .... entering phase 1 work 
 
        PAPI_TOT_INS :  Tot[ 11312314 ] Rt[ 1132324 ] 
        PAPI_FP_INS :   Tot[ 2764800 ]  Rt[ 276480 ] 
        PAPI_L2_DCM :   Tot[ 5365 ]     Rt[ 566 ] 
        PAPI_real_cyc = 1920881 PAPI_real_usec = 738 
        PAPI_user_cyc = 0       PAPI_user_usec = 0 
 .... entering phase 2 work 
 
        PAPI_TOT_INS :  Tot[ 699941134 ]        Rt[ 69995206 ] 
        PAPI_FP_INS :   Tot[ 170065920 ]        Rt[ 17006592 ] 
        PAPI_L2_DCM :   Tot[ 205283 ]   Rt[ 21287 ] 
        PAPI_real_cyc = 58231930        PAPI_real_usec = 22397 
        PAPI_user_cyc = 52000000        PAPI_user_usec = 20000 
 PREDICTION P1( TOTAL FP_OPS ) = PEs * nits * (8.m.n.l + 13.m.n) 
 ==       8263680 
 
 PREDICTION P2( FP_OPS ) = PEs * nits * (8.mm.nn.ll + 13.mm.nn) 
 ==     509706240 
                     time                   ins                       fp                   dm 
P-1:                  2201              33936960               8294400                 16114 
P-2:                 67371            2099823391             510197760                616193 
PAPI_TOT_INS :  Tot[ 26590 ]    Rt[ 23854 ] 
PAPI_FP_INS :   Tot[ 0 ]        Rt[ 0 ] 
PAPI_L2_DCM :   Tot[ 180 ]      Rt[ 93 ] 
        PAPI_real_cyc = 1200544 PAPI_real_usec = 462 
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        PAPI_user_cyc = 0       PAPI_user_usec = 0 
Application 2670781 resources: utime 0, stime 0 
 
real    0m19.724s 
user    0m0.148s 
sys     0m0.076s 
roche@jaguarpf-login1:/tmp/work/roche/GPRA-PMM-q4> 

 

Note that the predicted number of floating point instructions executed is based upon knowledge of the kernel 
complexity multiplied by the number of iterations for the kernel multiplied by the number of processes that are 

locally computing the kernel. The agreement of the predictions to the measurements obtained by calling the KRP 

wrappers is outstanding. The code was executed on 10 PEs of the target architecture. In the first phase of execution, 

each PE first locally multiplied the 32x32 complex double precision matrices followed by a second phase where 

128x128 complex double precision matrices were multiplied. There were three iterations of the loop over these 

phases of work per PE. For phase 1 and the example we predicted 8263680 and measured 8294400. For phase 2 of 

the example we predicted 509706240 and measured 510197760. 
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APPENDIX B.  TD_SLDA 
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B.1 INPUT SETTINGS 

The code was run with the same input for both quarters. 

 

Nuclear Code 
 

40 40 64 1.25 1.25 1.25 
92 146 
1 1 1 10 2 2 1 
1 0 1 1 
1.d-8 3000. .4d0 0.d0 100.d0 0.d0 0 
330 330 40 40 
 
! 
 
/tmp/work/istet/td-run/U238_gs/data-404064/ 
 
         read(31,*)Nx,Ny,Nz,Lx,Ly,Lz 
         read(31,*)Nprotons,Nneutrons 
         read(31,*)iter,iread,nsave,nprint,itext_inp,itext,iopt_der 
         read(31,*)icoul,iext,iforce,ihfb 
         read(31,*)eps,beta,hbo,e_f,e_w,alpha 
         read(31,*)p_proc , q_proc , m_block , n_block 

 
 

Unitary Code 

 
3 , 0 , 0 
/tmp/work/istet/td-run/U238_gs/data-404064/ 
/tmp/work/istet/td-run/U238_gs/data-td/ 
/tmp/work/istet/td-run/U238_gs/data-td/ 
28000.d0 600.d0 
0.d0 0.d0 6.d0 
0.d0 0.d0 -21.d0 
25. 75. 9.d0 
0 0 0 
 
open( 438 , file = 'td_slda.inp' , status = 'old' ) 
 
read( 438 , * ) icprs , i_run , i_read_wf 
 
read( 438 ,'(a80)')file_work_dir_wf 
 
read( 438 ,'(a80)')file_work_dir_in 
 
read( 438 ,'(a80)')file_work_dir_out 
 
read( 438 , * ) E_inc , theta_inc , phi_inc 
 
read( 438 , * ) x_n , y_n , z_n 
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B.2 COMPILATION 

TD_SLDA was compiled using the default Portland Group Fortran compiler, version 9.0.4.  Below 

the makefile and build scripts are reproduced for the nuclear code and the unitary code. 

B.2.1  Q2 COMPILATION 

 

Nuclear Code 
 

compile.slda-nuclear-GPRA-PMM-bm : 
clear ; 
date ; 
echo "...compilation of nuclear-solver" ;  
time source compile.nuclear-slda ; 
echo "...compilation of time dependent nuclear code" ;  
time source compile.td-slda-nuclear ; 
 

compile.nuclear-slda : 
cc -c ${PAPI_INCLUDE_OPTS} krp-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt.c ; 
cc -c get-blcs-dscr.c ; 
cc -c get-mem-req-blk-cyc.c ; 
cc -c bc-fil-wr.c ; 
cc -c bc-fil-wr-ftn.c 
ftn -c -C -Kieee ${FFTW_INCLUDE_OPTS} slda-nuclear-solver_v03.f90 ; 
ftn -c -fastsse -Mr8 liberf.f90 ; 
ftn -o xslda-test slda-nuclear-solver_v03.o liberf.o get-blcs-dscr.o get-

mem-req-blk-cyc.o bc-fil-wr.o bc-fil-wr-ftn.o krp-init.o krp-rpt-init.o krp-
rpt.o ${FFTW_POST_LINK_OPTS} ${PAPI_INCLUDE_OPTS} -lLUT -lsci -lpthread –lm ; 

 

compile.td-slda-nuclear : 
cc -c ${PAPI_INCLUDE_OPTS} krp-init.c ;  
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c ;  
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt.c ;  
ftn -c ${FFTW_INCLUDE_OPTS} td-slda-nuclear-solver-read.f90 ;  
ftn -c -r8 liberf.f90 ;  
ftn -o xtdslda krp-init.o krp-rpt-init.o krp-rpt.o td-slda-nuclear-solver-

read.o liberf.o ${PAPI_POST_LINK_OPTS} ${FFTW_POST_LINK_OPTS} -lLUT -lsci -
lpthread –lm ; 

 

 

Unitary Code 

 
compile.slda-unitary-GPRA-PMM-bm : 

clear ; 
date ; 
echo "...compilation of kz-solver" ;  
time source compile.3d-kz-io ; 
echo "...compilation of time dependent unitary code" ;  
time source compile.td-slda-ug ;  
echo "...compilation of time dependent unitary restart code" ;  
time source compile.td-slda-ug-rs  
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compile.3d-kz-io : 
echo "rm -f *.o xfort-usr *.mod" ; 
rm -f *.o x* ; 
echo "cc -c get_mem_req_blk_cyc.c" ; 
cc -c get_mem_req_blk_cyc.c ; 
echo "cc -c get_pwrk_spc.c"; 
cc -c get_pwrk_spc.c; 
echo "cc -c init_wrk_bf.c "; 
cc -c init_wrk_bf.c ; 
echo "cc -c ${PAPI_INCLUDE_OPTS} krp-init.c" ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-init.c ; 
echo "cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c" ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c ; 
echo "cc -c ${PAPI_INCLUDE_OPTS} krp-rpt.c" ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt.c ; 
echo "cc -c get_full_hfb.c" ; 
cc -c get_full_hfb.c ; 
echo "cc -c rsyeig.c" ; 
cc -c rsyeig.c ; 
echo "cc -c mk_nrm.c" ; 
cc -c mk_nrm.c ; 
echo "cc -c pmatrix-infnorm.c" ; 
cc -c pmatrix-infnorm.c ; 
echo "cc -c chk_err.c" ; 
cc -c chk_err.c ; 
echo "cc -c fvv.c" ; 
cc -c fvv.c ; 
echo "cc -c fuv.c" ; 
cc -c fuv.c ; 
echo "cc -c write_wf.c"; 
cc -c write_wf.c; 
echo "cc -c write_ctrl_pot_c.c"; 
cc -c write_ctrl_pot_c.c; 
echo "ftn -c paslda_init.f90" ; 
ftn -c paslda_init.f90 ;  
echo "...linking for build of binary : xkz-io-ug-GPRA-PMM" ; 
echo "ftn -o xkz-io-ug-GPRA-PMM paslda_init.o krp-init.o krp-rpt-init.o 

krp-rpt.o get_pwrk_spc.o init_wrk_bf.o get_mem_req_blk_cyc.o get_full_hfb.o 
rsyeig.o mk_nrm.o chk_err.o fvv.o fuv.o pmatrix-infnorm.o write_wf.o 
write_ctrl_pot_c.o ${PAPI_POST_LINK_OPTS} -lsci -lLUT -lpthread -lm" ; 

ftn -o xkz-io-ug-GPRA-PMM paslda_init.o krp-init.o krp-rpt-init.o krp-
rpt.o get_pwrk_spc.o init_wrk_bf.o get_mem_req_blk_cyc.o get_full_hfb.o 
rsyeig.o mk_nrm.o chk_err.o fvv.o fuv.o pmatrix-infnorm.o write_wf.o 
write_ctrl_pot_c.o ${PAPI_POST_LINK_OPTS} -lsci -lLUT -lpthread -lm ; 

 
compile.td-slda-ug : 

echo "cc  -c -DKMPT  -DKRP -I/opt/xt-tools/papi/3.6.2.2/include -
I/opt/fftw/3.2.2.1/include 3d-td-slda-unitary-io.c" ; 

cc  -c -DKMPT  -DKRP -I/opt/xt-tools/papi/3.6.2.2/include -
I/opt/fftw/3.2.2.1/include 3d-td-slda-unitary-io.c ; 

echo "...linking for build of binary : xtdslda-ug-GPRA-PMM" ; 
echo "cc  -o xtdslda-ug-GPRA-PMM 3d-td-slda-unitary-io.o 

${PAPI_POSTLINK_OPTS} ${FFTW_POST_LINK_OPTS} -lLUT -lpthread -lm"; 
cc  -o xtdslda-ug-GPRA-PMM 3d-td-slda-unitary-io.o ${PAPI_POSTLINK_OPTS} 

${FFTW_POST_LINK_OPTS} -lLUT -lpthread –lm ; 
 

compile.td-slda-ug-rs : 
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echo "cc  -c -DKMPT -DRSTRT -DKRP -I/opt/xt-tools/papi/3.6.2.2/include -
I/opt/fftw/3.2.2.1/include 3d-td-slda-unitary-io.c" ; 

cc  -c -DKMPT -DRSTRT -DKRP -I/opt/xt-tools/papi/3.6.2.2/include -
I/opt/fftw/3.2.2.1/include 3d-td-slda-unitary-io.c ; 

echo "...linking for build of restart binary : xtdslda-ug-GPRA-PMM-rs" ; 
echo "cc  -o xtdslda-ug-GPRA-PMM-rs 3d-td-slda-unitary-io.o 

${PAPI_POSTLINK_OPTS} ${FFTW_POST_LINK_OPTS} -lLUT -lpthread -lm"; 
cc  -o xtdslda-ug-GPRA-PMM-rs 3d-td-slda-unitary-io.o 

${PAPI_POSTLINK_OPTS} ${FFTW_POST_LINK_OPTS} -lLUT -lpthread -lm 

B.2.2  Q4 COMPILATION 

 

Nuclear code 
 
istet@jaguarpf-login2:/tmp/work/istet/td-run/U238_gs> cat 

~/slda/v09/compile9 
cc -c ${PAPI_INCLUDE_OPTS} krp-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init-sum.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt.c ; 
cc -c get-blcs-dscr.c ; 
cc -c get-mem-req-blk-cyc.c ; 
cc -c bc-fil-wr.c ; 
cc -c bc-fil-wr-ftn.c 
cc -c kr-cwr.c ; 
cc -c bc-wr-lstr-scl.c ; 
ftn -c -fastsse -Kieee -pc 64 -r8 ${FFTW_INCLUDE_OPTS} slda-nuclear-

solver_v095.f90 ; 
ftn -c -fastsse -Kieee -pc 64 -r8 liberf.f90 ; 
ftn -o xslda-gs-q4 -Kieee -r8 -pc 64 slda-nuclear-solver_v095.o bc-

wr-lstr-scl.o liberf.o kr-cwr.o get-blcs-dscr.o get-mem-req-blk-cyc.o 
bc-fil-wr.o bc-fil-wr-ftn.o krp-init.o krp-rpt-init.o krp-rpt-init-
sum.o krp-rpt.o ${FFTW_POST_LINK_OPTS} ${PAPI_INCLUDE_OPTS} -lLUT -
lsci -lpthread -lm 

 

 

Unitary code 
 
istet@jaguarpf-login2:/tmp/work/istet/td-run/U238_gs> cat 

~/td/cmpl.td-der 
cc -c f-betim.c ; 
cc -c cprs-cases.c ; 
cc -c fposio-wf.c ; 
cc -c get-rnd-wf.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt-init-sum.c ; 
cc -c ${PAPI_INCLUDE_OPTS} krp-rpt.c ; 
ftn -c liberf.f90 ; 
ftn -c -C -I/opt/xt-tools/papi/3.7.2/v23/include -

I/opt/fftw/3.2.2.1/include td-slda-nuclear-solver-read-gp.f90 ; 
ftn -o xtdslda td-slda-nuclear-solver-read-gp.o liberf.o krp-init.o 

krp-rpt-init.o krp-rpt-init-sum.o krp-rpt.o f-betim.o get-rnd-wf.o 
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fposio-wf.o cprs-cases.o ${FFTW_POST_LINK_OPTS} –lsci -L/opt/xt-
tools/papi/3.7.2/v23/lib -lpapi -lpfm -lLUT -lpthread -lm 
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B.3 BATCH SCRIPTS 

B.3.1  Q2 BATCH SCRIPTS 

qscr-csc053sld-nuc : 
 
#!/bin/bash 
 
#PBS -V 
#PBS -l walltime=01:00:00,size=73728 
#PBS -A csc053sld 
#PBS -N slda-nuc-slv-GPRA-PMM 
#PBS -j oe 
 
cd ${PBS_O_WORKDIR} 
time aprun -n 73728 ./xslda-test 
 
 

qscr-csc053sld-td-nuc : 
 
#!/bin/bash 
 
#PBS -V 
#PBS -l walltime=06:00:00,size=16416 
#PBS -A csc053sld 
#PBS -N tdslda_nuc-GPRA-PMM 
#PBS -j oe 
 
cd ${PBS_O_WORKDIR} 
time aprun -n 16414 ./xtdslda 
 

 
qscr-csc053sld : 

 
#PBS -V 
#PBS -l walltime=04:00:00,size=7344 
#PBS -A csc053sld 
#PBS -N slda-ug-slv-GPRA-PMM-q2 
#PBS -j oe 
cd ${PBS_O_WORKDIR} 
time aprun -n 7344 ./xkz-io-ug-GPRA-PMM 
 
 

qscr-csc053sld-td : 
 
#PBS -V 
#PBS -l walltime=15:00:00,size=103920 
#PBS -A csc053sld 
#PBS -N slda-ug-td-GPRA-PMM-q2 
#PBS -j oe 
cd ${PBS_O_WORKDIR} 
time aprun -n 103917 ./xtdslda-ug-GPRA-PMM-rs 50 50 100 103917 

0.2338143545868483 4.5060815728113202 /tmp/work/roche/slda-io/run 
/tmp/work/roche/slda-io/run/td-slda-dir 52000. 

 
 

qscr-csc053sld-td-rs : 
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#PBS -V 
#PBS -l walltime=8:00:00,size=103920 
#PBS -A csc053sld 
#PBS -N slda-ug-td-GPRA-PMM-q2 
#PBS -j oe 
cd ${PBS_O_WORKDIR} 
time aprun -n 103917 ./xtdslda-ug-GPRA-PMM-rs 50 50 100 103917 

0.2338143545868483 4.5060815728113202 /tmp/work/roche/slda-io/run 
/tmp/work/roche/slda-io/run/td-slda-dir 26100. 

B.3.2  Q4 BATCH SCRIPTS 

 

Nuclear Code 
#!/bin/bash 
 
#PBS -V 
#PBS -l walltime=07:30:00,size=217800 
#PBS -A csc053sld 
#PBS -N slda-404064-U238_gs 
#PBS -j oe 
 
cd ${PBS_O_WORKDIR} 
time aprun -n 217800 ./xslda-gs-q4 
 

 

Unitary Code 
istet@jaguarpf-login2:/tmp/work/istet/td-run/U238_gs> cat run-td.sc 
#!/bin/bash 
 
#PBS -V 
#PBS -l walltime=2:30:00,size=136632 
#PBS -A csc053sld 
#PBS -N td-404064-GPRA-PMM 
#PBS -j oe 
 
cd ${PBS_O_WORKDIR} 
time aprun -n 136628 ./xtdslda 
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B.4 RUNTIME ENVIRONMENT 

B.4.1  Q2 RUNTIME ENVIRONMENT 

roche@jaguarpf-login1:/tmp/work/roche/slda-io> module load xt-papi 
liblut fftw  

roche@jaguarpf-login1:/tmp/work/roche/slda-io> module list  
Currently Loaded Modulefiles: 
  1) modules/3.1.6                                            
  2) DefApps                                                  
  3) torque/2.4.1b1-snap.200905191614                         
  4) moab/5.3.6                                               
  5) /opt/cray/xt-asyncpe/default/modulefiles/xtpe-istanbul   
  6) cray/MySQL/5.0.64-1.0000.2342.16.1                       
  7) xtpe-target-cnl                                          
  8) xt-service/2.2.41A                                       
  9) xt-os/2.2.41A                                            
10) xt-boot/2.2.41A                                          
11) xt-lustre-ss/2.2.41_1.6.5                                
12) cray/job/1.5.5-0.1_2.0202.18632.46.1                     
  13) cray/csa/3.0.0-1_2.0202.18623.63.1                       
14) cray/account/1.0.0-2.0202.18612.42.3                     
15) cray/projdb/1.0.0-1.0202.18638.45.1                      
16) Base-opts/2.2.41A                                        
17) pgi/9.0.4 
18) xt-libsci/10.4.1 
19) xt-mpt/3.5.1 
20) xt-pe/2.2.41A 
21) xt-asyncpe/3.5 
22) PrgEnv-pgi/2.2.41A 
23) xt-papi/3.6.2.2 
24) liblut/0.9.9 
25) fftw/3.2.2.1 
roche@jaguarpf-login3:/tmp/work/roche/slda-io> lfs setstripe 

/tmp/work/roche/slda-io/run -c 32 -s 2m -i -1 
roche@jaguarpf-login3:/tmp/work/roche/slda-io> lfs setstripe 

/tmp/work/roche/slda-io/run/td-slda-dir -c 64 -s 2m -i -1 
roche@jaguarpf-login3:/tmp/work/roche/slda-io> 

B.4.2  Q4 RUNTIME ENVIRONMENT 

 
Currently Loaded Modulefiles: 
  1) modules/3.1.6 
  2) DefApps 
  3) torque/2.4.1b1-snap.200905191614 
  4) moab/5.3.6 
  5) /opt/cray/xt-asyncpe/default/modulefiles/xtpe-istanbul 
  6) cray/MySQL/5.0.64-1.0000.2342.16.1 
  7) xtpe-target-cnl 
  8) xt-service/2.2.41A 
  9) xt-os/2.2.41A 
10) xt-boot/2.2.41A 
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11) xt-lustre-ss/2.2.41_1.6.5 
12) cray/job/1.5.5-0.1_2.0202.18632.46.1 
13) cray/csa/3.0.0-1_2.0202.18623.63.1 
14) cray/account/1.0.0-2.0202.18612.42.3 
15) cray/projdb/1.0.0-1.0202.18638.45.1 
16) Base-opts/2.2.41A 
17) pgi/10.3.0 
18) xt-libsci/10.4.4 
19) pmi/1.0-1.0000.7628.10.2.ss 
20) xt-mpt/4.0.0 
21) xt-pe/2.2.41A 
22) xt-asyncpe/3.7 
23) PrgEnv-pgi/2.2.41A 
24) fftw/3.1.1 
25) xt-papi/3.7.2 
26) liblut/0.9.9 
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APPENDIX C.  POP 
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C.1 INPUT SETTINGS 
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C.2 COMPILATION 

POP was compiled using the default Portland Group compiler, version 9.0.4. 
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C.3 BATCH SCRIPT 
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C.4 RUNTIME ENVIRONMENT 

Currently Loaded Modulefiles: 
  1) modules/3.1.6 
  2) DefApps 
  3) torque/2.4.1b1-snap.200905191614 
  4) moab/5.3.6 
  5) /opt/cray/xt-asyncpe/default/modulefiles/xtpe-istanbul 
  6) cray/MySQL/5.0.64-1.0000.2342.16.1 
  7) xtpe-target-cnl 
  8) xt-service/2.2.41A 
  9) xt-os/2.2.41A 
 10) xt-boot/2.2.41A 
 11) xt-lustre-ss/2.2.41_1.6.5 
 12) cray/job/1.5.5-0.1_2.0202.18632.46.1 
 13) cray/csa/3.0.0-1_2.0202.18623.63.1 
 14) cray/account/1.0.0-2.0202.18612.42.3 
 15) cray/projdb/1.0.0-1.0202.18638.45.1 
 16) Base-opts/2.2.41A 
 17) pgi/9.0.4 
 18) xt-libsci/10.4.1 
 19) xt-mpt/3.5.1 
 20) xt-pe/2.2.41A 
 21) xt-asyncpe/3.5 
 22) PrgEnv-pgi/2.2.41A 
 23) subversion/1.5.0 
 24) nco/3.9.4 
 25) ferret/6.1 
 26) xt-papi/3.6.2.2 
setenv MPICH_RANK_REORDER_METHOD 0 
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APPENDIX D.  LS3DF 
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D.1 INPUT SETTINGS 

There are a few input files, including the atomic configuration file for the system (e.g., 

xatom.config), the atomic pseudopotential files vwr.H, vwr.Zn.d, vwr.O, vwr.H0.5, 

vwr.H1.5. There are also a few special files needed for fragment generation: gen_ZnO_rod.input, 

H_O_O.group, H_O_Zn.group, H_O_Zn_Zn.group. All these files are available on jaguar in the 

directory 

/ccs/proj/nti009/linwang/GPRA-PMM_CODE/WORK.  

 

Besides the above files, the main LS3DF input and control file is LS3DF.input. The Q2 and Q4 input 

files are included in /ccs/proj/nti009/linwang/GPRA-PMM_CODE/WORK as 

LS3DF.input.Q2 and LS3DF.input.Q4 respectively. They need to be copied to LS3DF.input 

before the run.  

 
The input files for LS3DF are all nearly identical, except for the line that inputs the number of groups 

and the group sizes, so we reproduce one representative input file below, which uses 43,200 cores. 

 
1  xatom.config, 1, 0, 1             ! the total f_xatom file, 
iflag_mem_wave,iflag_mem_loc,iflag_report  
2  108, 80 , 720           !num_group,num_proc_pergroup, nnodes_G(global 
GENPOT)  
3  18,6,6,18,6,6,1       !m1,m2,m3, mn1,mn2,mn3 (mn1,2,3 divide m1,2,3 
for patching parallelization),ngroup(always 1)    
4  40,50,50             !nd1,nd2,nd3 (n1=nd1*m1,etc) 
5  0.5  0.5   0.5           ! add_vac1,2,3  (frag length in dir1= 
(L1+2*add_vac1)*nd1, L1=1,2) 
6  18  40    ! nslice, multi (MUST ***nnodes_G=nslice*multi***) 
(for gen_dvr,gen_vrF,get_denstot) 
7  10, 0., 1                    ! ido_dVr (whether to calc dVr at the begin 
of the calc) 
8   2  10                 ! iter_init,niter:(iter=iter_init,iter_init+niter-
1),init pot: vr.in_tot."iter_init"  
9   3                    ! Number of atoms for bond information (used to 
assign passivation atoms) 
10  30   4.570  4       ! iatom, bond_length, num_neighbor(not used)  
11  8    3.50   4       ! Zn-O bond (3.7588) 
12  1    1.257  1       ! H-O bond  (1.9029) 
------------------------------------------------------------------- 
1   1, 0                   ! islda, igga 
2   50, 100, 100, 1.         ! Ecut,Ecut2,Ecut2L,Smth 
3   0, 0., 0., 0.          ! icoul,xcoul(1),(2),(3), this is for fragment 
potential only (if to be calculated) 
4   1.D-6, 1.D-10          ! tolug, tolE 
5   20,  4,   2,  0, 0.0, 0, 0                  ! niter,nline,mCGbad (for the 
first frag_PEtot iteration, iter=1) 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
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    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
6   1,  4,   2, 1, -2.8              ! niter,nline,mCGbad (for subsequent 
frag_PEtot iterations, iter > 1) 
    3   1   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi (always use 
iscfmth=1 to have output dens) 
7   3                      ! ilocal 
8   3.4                    ! rcut 
9   5                      ! ntype 
    vwr.O     1 
    vwr.Zn.d     1 
    vwr.H0.5   1 
    vwr.H1.5   1 
    vwr.H     1 
10  720  300  300  720  300  300     ! n1,n2,n3;n1L,n2L,n3L (n1 must be 
nd1*m1, etc), for GENPOT 
11   1, 0.0, 0.0, 0.0                ! icoul,xcoul(1),(2),(3), this is for 
the whole system, for GENPOT 
12   0, vext_file                 ! ivext, f_vext (external potential), for 
GENPOT 
13   0, symm.file                 ! isymm, symm.file, if isymm=1, read symm 
info from symm.file, for GENPOT 
14   24432.                         ! totNel (for the total system), for 
GENPOT 
*****************************************************************************
************** 
** END OF INPUT 
**************************************************************************** 
 
cccccccccccccccccccccccccccccccc 
ccca The total num of proc for calculatio:  nnodes_all  
cccc nnodes_all can be smaller or equal to num_group*num_proc_pergroup. 
cccc But nnodes_all must be muliple of num_proc_pergroup 
cccc nnodes_all must be >= mn1*mn2*mn3 (that is why mn1,mn2,mn3 could be 
smaller than m1*m2*m3) 
cccc nnodes_all could be smaller than num_group 
cccc nslice: smaller nslice (e.g,1), more efficient for 
gen_dvr,gen_vrF,get_denstot, but more memory. 
cccc multi is used to format the write out in the total density and 
potential. nproc=nslice*multi in dens.file 
cccc for iter_init=1, there is no input wavefunction 
cccc for iter_init>1, must have input wavefunction in d_wg.odd or d_wg.even 
(no iter index for wg name) 
cccc for iter=odd(1,3,5..), input from d_wg.even, output d_wg.odd 
cccc for iter=even(0,2,4..), input from d_wg.odd, output d_wg.even 
cccc The output total potential and density are stored for all the 
iterations.  
cccc For each iter, it will generate fragment pot in d_vrF from total input 
pot: vr.in_tot."iter". 
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cccc To start the iteration, the first input total potential is 
vr.in_tot."iter_init" (make sure it exists). 
cccc If ido_dVr=1, it will generates (or over write) vr.in_tot.001 (= 
vr.atom_tot from dens.atom_tot) 
cccc For iter=1, it will calculate and store the noloc reference states (from 
mainMV2_S) and vion_n.GENPOT.  
cccc for iter=1, it will start from random wavefunc, and use the first set of 
(niter,nline,mCGbad) in above 
 
 

One  representative LS3DF.input.Q4  input file is shown as below. It uses 86400 cores. Note that, 

compared with LS3DF.input.Q2, the second line has one more parameter, the num_band_group. 

This is needed because the Q4 code has one more layer of parallelization, the band index parallelization. 

Besides the second line, all the other lines of the input file are the same as in LS3DF.input.Q2: 

 
1  xatom.config, 1, 1, 0             ! the total f_xatom file, 
iflag_mem_wave,iflag_mem_loc,iflag_report  
2  432, 100, 2, 720           !num_group,num_proc_pergroup,num_band_group, 
nnodes_G(global GENPOT)  
3  18,6,6,18,6,6,1       !m1,m2,m3, mn1,mn2,mn3 (mn1,2,3 divide m1,2,3 for patching 
parallelization),ngroup(always 1)    
4  40,50,50             !nd1,nd2,nd3 (n1=nd1*m1,etc) 
5  0.5  0.5   0.5           ! add_vac1,2,3  (frag length in dir1= (L1+2*add_vac1)*nd1, 
L1=1,2) 
6  18  40    ! nslice, multi (MUST ***nnodes_G=nslice*multi***) (for 
gen_dvr,gen_vrF,get_denstot) 
7  10, 0., 1                    ! ido_dVr (whether to calc dVr at the begin of the 
calc) 
8   2  10                 ! iter_init,niter:(iter=iter_init,iter_init+niter-1),init 
pot: vr.in_tot."iter_init"  
9   3                    ! Number of atoms for bond information (used to assign 
passivation atoms) 
10  30   4.570  4       ! iatom, bond_length, num_neighbor(not used)  
11  8    3.50   4       ! Zn-O bond (3.7588) 
12  1    1.257  1       ! H-O bond  (1.9029) 
------------------------------------------------------------------- 
1   1, 0                   ! islda, igga 
2   50, 100, 100, 1.         ! Ecut,Ecut2,Ecut2L,Smth 
3   0, 0., 0., 0.          ! icoul,xcoul(1),(2),(3), this is for fragment potential 
only (if to be calculated) 
4   1.D-6, 1.D-10          ! tolug, tolE 
5   20,  4,   2,  0, 0.0, 0, 0                  ! niter,nline,mCGbad (for the first 
frag_PEtot iteration, iter=1) 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  0   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
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    3  10   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi 
6   1,  4,   2, 1, -2.8              ! niter,nline,mCGbad (for subsequent frag_PEtot 
iterations, iter > 1) 
    3   1   0.2     1       ! iCGmth,iscfmth,FermidE,itypeFermi (always use iscfmth=1 
to have output dens) 
7   3                      ! ilocal 
8   3.4                    ! rcut 
9   5                      ! ntype 
    vwr.O     1 
    vwr.Zn.d     1 
    vwr.H0.5   1 
    vwr.H1.5   1 
    vwr.H     1 
10  720  300  300  720  300  300     ! n1,n2,n3;n1L,n2L,n3L (n1 must be nd1*m1, etc), 
for GENPOT 
11   1, 0.0, 0.0, 0.0                ! icoul,xcoul(1),(2),(3), this is for the whole 
system, for GENPOT 
12   0, vext_file                 ! ivext, f_vext (external potential), for GENPOT 
13   0, symm.file                 ! isymm, symm.file, if isymm=1, read symm info from 
symm.file, for GENPOT 
14   24432.                         ! totNel (for the total system), for GENPOT 
**************************************************************************************
***** 
** END OF INPUT 
**************************************************************************** 
 
cccccccccccccccccccccccccccccccc 
ccca The total num of proc for calculatio:  nnodes_all  
cccc nnodes_all can be smaller or equal to num_group*num_proc_pergroup. 
cccc But nnodes_all must be muliple of num_proc_pergroup 
cccc nnodes_all must be >= mn1*mn2*mn3 (that is why mn1,mn2,mn3 could be smaller than 
m1*m2*m3) 
cccc nnodes_all could be smaller than num_group 
cccc nslice: smaller nslice (e.g,1), more efficient for gen_dvr,gen_vrF,get_denstot, 
but more memory. 
cccc multi is used to format the write out in the total density and potential. 
nproc=nslice*multi in dens.file 
cccc for iter_init=1, there is no input wavefunction 
cccc for iter_init>1, must have input wavefunction in d_wg.odd or d_wg.even (no iter 
index for wg name) 
cccc for iter=odd(1,3,5..), input from d_wg.even, output d_wg.odd 
cccc for iter=even(0,2,4..), input from d_wg.odd, output d_wg.even 
cccc The output total potential and density are stored for all the iterations.  
cccc For each iter, it will generate fragment pot in d_vrF from total input pot: 
vr.in_tot."iter". 
cccc To start the iteration, the first input total potential is vr.in_tot."iter_init" 
(make sure it exists). 
cccc If ido_dVr=1, it will generates (or over write) vr.in_tot.001 (= vr.atom_tot from 
dens.atom_tot) 
cccc For iter=1, it will calculate and store the noloc reference states (from 
mainMV2_S) and vion_n.GENPOT.  
cccc for iter=1, it will start from random wavefunc, and use the first set of 
(niter,nline,mCGbad) in above 
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D.2 COMPILATION 

LS3DF uses the default Portland Group compiler, version 9.0.4. It uses the modules acml and xt-papi.  

The compiler option is –fast.  The source codes are stored in (on the NCCS file system): 

 
/ccs/proj/nti009/linwang/GPRA-PMM_CODE 
 

The Q2 source code is in: 
/ccs/proj/nti009/linwang/GPRA-PMM_CODE/LS3DF_Q2_SOURCE 
 

To compile, follow the steps: 
>module load acml 
>module load xt-papi 
>cc –c ${PAPI-INCLUDE_OPTS} krp-init.c 
>cc –c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c 
>cc –c ${PAPI_INCLUDE_OPTS} krp-rpt.c 
>make LS3DF 
 

The final link will look like: 
/opt/cray/xt-asyncpe/3.7/bin/ftn: INFO: linux target is being used 
ftn -o LS3DF krp-init.o krp-rpt-init.o krp-rpt.o  -L/opt/xt-
tools/papi/3.7.2/v23/lib -lpapi -lpfm LS3DF.o load_data.o fft_data.o 
data.o MParallel.o IOdata.o IOmch.o input_head.o mainMV2_S2.o 
GENPOT_V3_S.o Hpsi_comp.o Hpsi_comp_AllBand.o CG_comp.o CG_new.o 
CG_AllBand.o getpot2.o getpot3.o getpot4.o getpot2L.o getpot3L.o 
getpot4L.o getpot4_force.o getpot5.o getpot5L.o getpot5_force.o 
GGAPBE.o d3fft_comp.o d3fft_comp_block.o cfft.o cfftd.o diag_comp.o 
diag_comp_allband.o djacobi.o convert_SLvr.o d3fft_real2.o 
d3fft_real2L.o d3fft_real2L2.o fftprep_comp.o fftprep_real2.o 
fftprep_real2L.o fftprep_real2L2.o fwdcpfft_comp.o 
fwdcpfft_comp_block.o fwdcpfft2.o fwdcpfft2L.o fwdcpfft2L2.o 
invcpfft_comp.o invcpfft_comp_block.o invcpfft2.o invcpfft2L.o 
invcpfft2L2.o gen_G_comp.o gen_G2_real.o gen_G2L_real.o 
gen_G2L2_real.o global_maxi.o global_sumr.o global_sumc.o fmin.o 
heapsort.o inputSP.o input_GENPOT.o init_ugSP.o init_ugSP00.o 
init_ugSP001.o gaussj.o UxcCA.o UxcCA2.o w_line.o getewald.o 
getwmask.o getwmaskX.o getwmask_q.o add_rho_beta.o getVrho.o 
mch_pulayF.o mch_kerkF.o mch_pulay_GENPOT.o mch_kerk_GENPOT.o 
Thomas3.o getNLsign.o getwq.o atomMV.o Etotcalc_V.o rhoIO_dir.o 
rhoIO.o ugIO.o wqIO.o beta_psiIO.o get_ALI.o occup.o gen_Gstar_ind.o 
symmop.o symmopf.o symmcheck.o forcLC.o forcNLq.o forcNLr.o ran1.o 
dens_out.o densWr_out.o readusp_head.o w_line_vwr.o w_line_usp.o 
LegendreSP.o clebsch_gordan.o get_Dij.o system_orth_comp.o 
system_ccfft.o system_csfft.o system_scfft.o system_czheev.o 
system_flush.o getwmask_dq.o get_VdqdR.o getvcoul.o convert_2LtoL.o 
getV_Hartree0.o getV_Hartree.o getewald3D.o getewald2D.o forcLC2.o 
getEextV.o getrho_only.o write_wgSP.o gen_vrF_fmPN_NEW.o 
get_denstot_fmPN_NEW.o gen_dvr_fmPN_S.o frag2cubicN_S.o 
ave_dvr_cubicN_S.o getVrhoL_GENPOT.o system_time.o 
orthogonal_cholesky.o orthogonal_cholesky2.o projection_shift.o 
orthogonal_projection.o  
/opt/cray/xt-asyncpe/3.7/bin/ftn: INFO: linux target is being used 
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�

One can rename the executable LS3DF as LS3DF.Q2 
>mv LS3DF LS3DF.Q2 
 

 

The Q4 source code is in:  

 
/ccs/proj/nti009/linwang/GPRA-PMM_CODE/LS3DF_Q4_SOURCE 

 

To compile, follow the steps: 
>module load acml 
>module load xt-papi 
>cc –c ${PAPI-INCLUDE_OPTS} krp-init.c 
>cc –c ${PAPI_INCLUDE_OPTS} krp-rpt-init.c 
>cc –c ${PAPI_INCLUDE_OPTS} krp-rpt.c 
>make LS3DF_BP 
 

The final link step will look like: 

�

/opt/cray/xt-asyncpe/3.7/bin/ftn: INFO: linux target is being used 
ftn  -o LS3DF_BP krp-init.o krp-rpt-init.o krp-rpt.o  -L/opt/xt-
tools/papi/3.7.2/v23/lib -lpapi -lpfm LS3DF.o load_data.o fft_data.o 
data.o MParallel.o IOdata.o IOmch.o input_head.o mainMV2_S2.o 
GENPOT_V3_S.o Hpsi_comp.o Hpsi_comp_AllBand.o Hpsi_comp_AllBandBP.o 
CG_comp.o CG_AllBand.o DIIS_comp.o orth_comp_DIIS.o getpot2.o 
getpot3.o getpot4.o getpot2L.o getpot3L.o getpot4L.o getpot4_force.o 
getpot5.o getpot5L.o getpot5_force.o GGAPBE.o d3fft_comp.o 
d3fft_comp_block.o diag_comp.o djacobi.o convert_SLvr.o d3fft_real2.o 
d3fft_real2L.o d3fft_real2L2.o fftprep_comp.o fftprep_real2.o 
fftprep_real2L.o fftprep_real2L2.o fwdcpfft_comp.o 
fwdcpfft_comp_block.o fwdcpfft2.o fwdcpfft2L.o fwdcpfft2L2.o 
invcpfft_comp.o invcpfft_comp_block.o invcpfft2.o invcpfft2L.o 
invcpfft2L2.o gen_G_comp.o gen_G2_real.o gen_G2L_real.o 
gen_G2L2_real.o global_maxi.o global_sumr.o global_sumc.o fmin.o 
heapsort.o inputSP.o input_GENPOT.o init_ugSP.o init_ugSP001.o 
init_ugSP00.o gaussj.o UxcCA.o UxcCA2.o w_line.o getewald.o getwmask.o 
getwmaskX.o getwmask_q.o add_rho_beta.o getVrho.o mch_pulayF.o 
mch_kerk_GENPOT.o mch_kerkF.o Thomas3.o getNLsign.o getwq.o atomMV.o 
Etotcalc_V.o rhoIO_dir.o rhoIO.o ugIO.o ugIOBP.o wqIO.o beta_psiIO.o 
get_ALI.o occup.o gen_Gstar_ind.o symmop.o symmopf.o symmcheck.o 
forcLC.o forcNLq.o forcNLr.o ran1.o dens_out.o densWr_out.o 
readusp_head.o w_line_vwr.o w_line_usp.o LegendreSP.o clebsch_gordan.o 
get_Dij.o getwmask_dq.o get_VdqdR.o getvcoul.o convert_2LtoL.o 
getV_Hartree0.o getV_Hartree.o getewald3D.o getewald2D.o forcLC2.o 
getEextV.o getrho_only.o write_wgSP.o gen_vrF_fmPN_NEW.o 
gen_vrF_fmPN_fix.o get_denstot_fmPN_NEW.o get_denstot_fmPN_fix.o 
gen_dvr_fmPN_S.o frag2cubicN_S.o ave_dvr_cubicN_S.o getVrhoL_GENPOT.o 
mch_pulay_GENPOT.o system_ccfft.o system_csfft.o 
system_czheev.scalapack.o system_flush.o system_orth_comp.o 
system_scfft.o system_time.o orthogonal_cholesky.o 
orthogonal_cholesky2.o orthogonal_choleskyBP.o orthogonal_projection.o 



 

E-23 

orthogonal_projectionBP.o projection_shift.o rotate_wfBP.o 
dot_product_BP.o   
/opt/cray/xt-asyncpe/3.7/bin/ftn: INFO: linux target is being used 

 
 

One can rename the executable LS3DF_BP as LS3DF.Q4 
>mv LS3DF_BP LS3DF.Q4 
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D.3 BATCH SCRIPT 

The working directory in which to run the job is 
/ccs/proj/nti009/linwang/GPRA-PMM_CODE/WORK 
 

There is a README_TO_RUN file that provides brief instructions for running the Q2 and Q4 tests. One 

first needs to copy the directory to a scratch directory, such as /tmp/work/linwang/WORK.  One also 

needs to copy the above compiled executables LS3DF.Q2 and LS3DF.Q4 to this directory.  

 

Then to run Q2 job, one can do: 
>cp LS3DF.input.Q2  LS3DF.input 
>mkdir_all 
>gen_ZnO_rod.r 
>qsub job.LS3DF.Q2 

 

The batch scripts for the Q2 runs differ only in number of processors and walltime requested, so we 

reproduce one representative script below. 
 

#!/bin/csh 
#PBS -V 
#PBS -A  csc0533df 
#PBS -N ZnO 
#PBS -j oe 
#PBS -l walltime=06:00:00,size=43200 
 
cd $PBS_O_WORKDIR  
time aprun –n43200  ./LS3DF.Q2 
 

For Q4 runs, in the same directory, one can do the following: 
>cp LS3DF.input.Q4  LS3DF.input 
>mkdir_all 
>gen_ZnO_rodNEW.r 
>qsub job.LS3DF.Q4 
 

Likewise, the batch scripts for the Q4 runs differ only in number of processors and walltime requested.  

The batch script job.LS3DF.Q4 looks like: 

 
#!/bin/csh 
#PBS -V 
#PBS -A  csc0533df 
#PBS -N ZnO 
#PBS -j oe 
#PBS -l walltime=06:00:00,size=86400 
 
cd $PBS_O_WORKDIR  
time aprun –n86400 ./LS3DF.Q4 
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D.4 RUNTIME ENVIRONMENT 

No special run time environment is needed; the default runtime environment on Jaguarpf is used. As 

described above, one can submit the job simply by invoking: >qsub job.LS3DF.Q2, or >qsub 
job.LS3DF.Q4.  

 

Results from one Q2 and one Q4 run are stored in /ccs/proj/nti009/linwang/GPRA-
PMM_CODE/Q2_Q4_results.  

The Q2 run uses 43200 cores on Jaguarpf. The Q2 results are in the following files: 

EtotN.report.Q2.43200 (the energy and potential converged result); 

LS3DF.report.Q2.43200 (the LS3DF report file for times on each steps); and 

LS3DF.count.Q2.43200 (the krp standard output result for floating point operation counts). For both 

Q2 and Q4 runs, there are 20 initial iterations for self-consistent calculations on each fragment, followed 

by 40 iterations of self-consistent runs for the global system. As reported in 

LS3DF.report.Q2.43200, the total Q2 run time is 3.87 hours.  

 

The reported results for the final two self-consistent iterations in EtotN.report.Q2.43200 are: 

�

--------------------------------------------------- 
 NSCF             =                   40 
 Ewald            = 0.80444822217138E+07 
 Ealphat          = 0.00000000000000E+00 
 E_kin+E_noloc    = -.11790709236651E+04 
 E_Hxc            = 0.81169415878854E+07 
 E_ion            = -.16256258085613E+08 
 E_dvrho,|E_dvrho|= -.23302191424857E+02     0.557E+05 
 E_tot, dE_tot    = -.96036649129028E+05    -0.652E-08 
 --------------------------------------------------- 
V_error =0.263731E-06 
 --------------------------------------------------- 
 --------------------------------------------------- 
 NSCF             =                   41 
 Ewald            = 0.80444822217138E+07 
 Ealphat          = 0.00000000000000E+00 
 E_kin+E_noloc    = -.11790709382839E+04 
 E_Hxc            = 0.81169415877122E+07 
 E_ion            = -.16256258085426E+08 
 E_dvrho,|E_dvrho|= -.23302190753184E+02     0.557E+05 
 E_tot, dE_tot    = -.96036649129033E+05    -0.559E-08 
 --------------------------------------------------- 
V_error =0.262371E-06 

 

 

 

The reported results for one of the self-consistent iterations for the global system in 

LS3DF.count.Q2.43200 are: 
--------------------- 
        PAPI_TOT_INS :  Tot[ 10972641 ] Rt[ 86483 ] 
        PAPI_FP_INS :   Tot[ 6 ]        Rt[ 6 ] 
        PAPI_L2_DCM :   Tot[ 321593 ]   Rt[ 107 ] 
        PAPI_real_cyc = 1458307 PAPI_real_usec = 561 
        PAPI_user_cyc = 0       PAPI_user_usec = 0 



 

E-26 

 
(below, for GEN_VF) 
        PAPI_TOT_INS :  Tot[ 927621961982903 ]  Rt[ 20667955727 ] 
        PAPI_FP_INS :   Tot[ 1885996802 ]       Rt[ 43291 ] 
        PAPI_L2_DCM :   Tot[ 17272255230 ]      Rt[ 864136 ] 
        PAPI_real_cyc = 14376838436     PAPI_real_usec = 5529554 
        PAPI_user_cyc = 14300000000     PAPI_user_usec = 5500000 
  
(below, for PEtot_F) 
        PAPI_TOT_INS :  Tot[ 24551708285257680 ]        Rt[ 

558017490394 ] 
        PAPI_FP_INS :   Tot[ 4416612394295743 ] Rt[ 118340026316 ] 
        PAPI_L2_DCM :   Tot[ 10307760119460 ]   Rt[ 257186392 ] 
        PAPI_real_cyc = 464872764009    PAPI_real_usec = 178797217 
        PAPI_user_cyc = 410306000000    PAPI_user_usec = 157810000 
 
(below, for GEN_DENS) 
        PAPI_TOT_INS :  Tot[ 917321716685209 ]  Rt[ 17152778599 ] 
        PAPI_FP_INS :   Tot[ 2806878555950 ]    Rt[ 258106169 ] 
        PAPI_L2_DCM :   Tot[ 245129321585 ]     Rt[ 13304738 ] 
        PAPI_real_cyc = 21597013149     PAPI_real_usec = 8306543 
        PAPI_user_cyc = 20644000000     PAPI_user_usec = 7940000 
 
(below, for POISSON) 
        PAPI_TOT_INS :  Tot[ 3027974496647585 ] Rt[ 64918997726 ] 
        PAPI_FP_INS :   Tot[ 60595536148 ]      Rt[ 84135313 ] 
        PAPI_L2_DCM :   Tot[ 62322321277 ]      Rt[ 3197937 ] 
        PAPI_real_cyc = 45267776644     PAPI_real_usec = 17410683 
        PAPI_user_cyc = 44226000000     PAPI_user_usec = 17010000 

----------------------------------------------------- 
 
 

 

The reported results for a representative self-consistent iteration (the 30th) for the global system in 

LS3DF.report.Q2.43200 are (the numbers are in seconds): 
---------------------------------- 
   30                              enter gen_vrF_fmPN_S 
   30      5.54  11498.24            out gen_vrF_fmPN_S 
   30                                   enter mainMV2_S 
   30    177.72  11676.05                 out mainMV2_S 
   30                          enter get_denstot_fmPN_S 
   30      8.34  11684.44        out get_denstot_fmPN_S 
   30                                 enter GENPOT_V3_S 
   30     17.88  11702.52               out GENPOT_V3_S 
------------------------------------ 

�

 

The following are for the Q4 run results on 86,400 cores. The results are stored in 

/ccs/proj/nti009/linwang/GPRA-PMM_CODE/Q2_Q4_results as: 

EtotN.report.Q4.86400, LS3DF.report.Q4.86400, and LS3DF.count.Q4.86400.  As 

reported in LS3DF.report.Q4.86400, the total run time is 1.48 hours.  
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The reported results for the final two self-consistent iterations in EtotN.report.Q4.86400 are: 

 
--------------------------------------------------- 
 NSCF             =                   40 
 Ewald            = 0.80444822217138E+07 
 Ealphat          = 0.00000000000000E+00 
 E_kin+E_noloc    = -.11794352468133E+04 
 E_Hxc            = 0.81169315470978E+07 
 E_ion            = -.16256247983043E+08 
 E_dvrho,|E_dvrho|= -.88141925787295E+00     0.550E+05 
 E_tot, dE_tot    = -.96014530896990E+05     0.866E-07 
 --------------------------------------------------- 
V_error =0.801700E-07 
 --------------------------------------------------- 
 --------------------------------------------------- 
 NSCF             =                   41 
 Ewald            = 0.80444822217138E+07 
 Ealphat          = 0.00000000000000E+00 
 E_kin+E_noloc    = -.11794352449335E+04 
 E_Hxc            = 0.81169315471252E+07 
 E_ion            = -.16256247983072E+08 
 E_dvrho,|E_dvrho|= -.88141867397644E+00     0.550E+05 
 E_tot, dE_tot    = -.96014530896978E+05     0.112E-07 
 --------------------------------------------------- 
V_error =0.788565E-07 

 
 
 

The reported results for one of the self-consistent iterations for the global system in 

LS3DF.count.Q4.86400 are: 

  
--------------------------------------------------------- 

        PAPI_TOT_INS :  Tot[ 21857399 ] Rt[ 84838 ] 
        PAPI_FP_INS :   Tot[ 6 ]        Rt[ 6 ] 
        PAPI_L2_DCM :   Tot[ 737020 ]   Rt[ 107 ] 
        PAPI_real_cyc = 1416477 PAPI_real_usec = 545 
        PAPI_user_cyc = 0       PAPI_user_usec = 0 
 
(below, for GEN_VF) 
        PAPI_TOT_INS :  Tot[ 2070404346252707 ] Rt[ 23760166563 ] 
        PAPI_FP_INS :   Tot[ 3769464002 ]       Rt[ 13887 ] 
        PAPI_L2_DCM :   Tot[ 307003900006 ]     Rt[ 2477030 ] 
        PAPI_real_cyc = 16184107996     PAPI_real_usec = 6224657 
        PAPI_user_cyc = 16198000000     PAPI_user_usec = 6230000 
 
(below, for PEtot_F) 
        PAPI_TOT_INS :  Tot[ 18238909877999718 ]        Rt[ 

243590522988 ] 
        PAPI_FP_INS :   Tot[ 3306262880906291 ] Rt[ 78876429185 ] 
        PAPI_L2_DCM :   Tot[ 8418141926934 ]    Rt[ 129904503 ] 
        PAPI_real_cyc = 157781836853    PAPI_real_usec = 60685322 
        PAPI_user_cyc = 149162000000    PAPI_user_usec = 57370000 
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(below, for GEN_DENS) 
        PAPI_TOT_INS :  Tot[ 2022716253054937 ] Rt[ 17685550182 ] 
        PAPI_FP_INS :   Tot[ 5585681681678 ]    Rt[ 257986509 ] 
        PAPI_L2_DCM :   Tot[ 720479294394 ]     Rt[ 13145287 ] 
        PAPI_real_cyc = 21407074107     PAPI_real_usec = 8233490 
        PAPI_user_cyc = 20410000000     PAPI_user_usec = 7850000 
 
(below, for POISSON) 
        PAPI_TOT_INS :  Tot[ 5644192881686333 ] Rt[ 57832352899 ] 
        PAPI_FP_INS :   Tot[ 61633253666 ]      Rt[ 85576359 ] 
        PAPI_L2_DCM :   Tot[ 789419086428 ]     Rt[ 3273336 ] 
        PAPI_real_cyc = 41531081185     PAPI_real_usec = 15973493 
        PAPI_user_cyc = 39000000000     PAPI_user_usec = 15000000 

---------------------------------------------------------------- 
 

 

The reported results for a representative self-consistent iteration (the 30th) for the global system in 

LS3DF.report.Q4.86400 are (the numbers are in seconds): 

 
------------------------------------ 
   30                              enter gen_vrF_fmPN_S 
   30      6.14   4227.59            out gen_vrF_fmPN_S 
   30                                   enter mainMV2_S 
   30     62.36   4289.95                 out mainMV2_S 
   30                          enter get_denstot_fmPN_S 
   30      8.17   4298.13        out get_denstot_fmPN_S 
   30                                 enter GENPOT_V3_S 
   30     15.50   4313.64               out GENPOT_V3_S 
-------------------------------------- 
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APPENDIX E.  DENOVO 
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E.1 INPUT SETTINGS 

The mesh and problem input for the Denovo GPRA-PMM PWR-900 benchmark problem was 

generated on orthanc.ornl.gov (LINUX x86_64 cluster) using Denovo’s python tools. The process for 

generating input for Denovo on Jaguar can be summarized as follows 
1. Generate mesh and cross sections using ADVANTG or MAVRIC (SCALE) 

2. Use the pykba toolset to generate binary input files for Jaguar. 

3. Port the binary inputs to Jaguar using sftp through dtn01.ccs.ornl.gov. 
4. Use Denovo’s hpckba HPC executable front-end to run the problem on Jaguar. 

The use of SCALE is well documented elsewhere (for example, see SCALE: A Modular Code System for 

Performing Standardized Computer Analyses for Licensing Evaluation, ORNL/TM-2005/39, Version 6, 

Vols I-III, January 2009). 
For the PWR-900 problem, we generated mesh and cross-sections from a KENO IV model of the 

PWR core using the SCALE MAVRIC sequence. The following python script was used to develop binary 

inputs for the hpckba front-end: 
setup_ms.py: 
## setup.py 
## 9te [orthanc] 
## Wed Jan 13 22:59:09 2010 
#############################################################################
## 
## Copyright (C) 2008 Oak Ridge National Laboratory, UT-Battelle, LLC. 
##---------------------------------------------------------------------------
## 
## generated by /home/9te/work/build/opt/bin/pygen built on 20100113 
#############################################################################
## 
 
import os, sys, math, string 
 
# pykba equation type 
from sc import * 
 
##---------------------------------------------------------------------------
## 
## MAIN 
##---------------------------------------------------------------------------
## 
 
initialize(sys.argv) 
 
if node() == 0: 
    print "Denovo - pykba Python Front-End" 
    print "-------------------------------" 
    print "Release      : %16s" % (release()) 
    print "Release Date : %16s" % (release_date()) 
    print "Build Date   : %16s" % (build_date()) 
    print 
 
timer = Timer() 
timer.start() 
 
##---------------------------------------------------------------------------
## 
## DB 
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##---------------------------------------------------------------------------
## 
 
reader = Mavric_Parser("edf_578x700.dnv") 
#reader = Mavric_Parser("edf_289x14.dnv") 
 
db = DB("pykba") 
 
reader.read_db(db) 
 
# problem type 
db.insert("problem_type", "EIGENVALUE") 
db.insert("problem_name", "edf_44grp") 
 
# high-level solver tolerance 
db.insert("tolerance", 1.0e-3) 
 
# solver descriptions 
db.insert("eigen_solver", "power_iteration") 
db.insert("mg_solver", "krylov") 
 
# within-group solver 
db.insert("within_group_solver", "GMRES_R") 
 
# upscatter options 
db.add_db("upscatter_db", "upscatter") 
db.insert("upscatter_db", "tolerance", 1.0e-3) 
db.insert("upscatter_db", "aztec_output", 1) 
 
# eigenvalue tolerance 
db.add_db("eigenvalue_db", "eigenvalue") 
db.insert("eigenvalue_db", "k_tolerance", 1.0e-3) 
db.insert("eigenvalue_db", "max_tolerance", 0.1) 
db.insert("eigenvalue_db", "diagnostic_level", 2) 
 
# data 
db.insert("downscatter", 0, 1) 
db.insert("Pn_order", 0) 
db.insert("num_groups", 44) 
 
# boundary conditions 
db.insert("boundary", "vacuum") 
 
# quadrature 
db.add_db("quadrature_db", "quadrature") 
db.insert("quadrature_db", "Sn_order", 12) 
 
# add partitioning info 
db.insert("num_sets", 1) 
db.insert("partition_upscatter", 0, 1) 
 
# decomposition (only for setup purposes) 
db.insert("num_z_blocks", 1) 
db.insert("num_blocks_i", 1) 
db.insert("num_blocks_j", 1) 
 
##---------------------------------------------------------------------------
## 
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## MANAGER 
##---------------------------------------------------------------------------
## 
 
# make manager, material, and angles 
manager = Manager() 
mat     = Mat() 
angles  = Angles() 
 
# partition the problem 
manager.partition(db, mat, angles) 
 
# get mapping and mesh objects 
mapp    = manager.get_map() 
indexer = manager.get_indexer() 
mesh    = manager.get_mesh() 
 
# global and local cell numbers 
Gx = indexer.num_global(X) 
Gy = indexer.num_global(Y) 
Gz = mesh.num_cells(Z) 
Nx = mesh.num_cells(X) 
Ny = mesh.num_cells(Y) 
Nz = mesh.num_cells(Z) 
 
if node() == 0: 
    print ">>> Partitioned global mesh with %i x %i x %i cells" \ 
          % (Gx, Gy, Gz) 
 
# print out the input database 
# db.output() 
 
##---------------------------------------------------------------------------
## 
## PARALLEL I/O 
##---------------------------------------------------------------------------
## 
 
out = HPC_Problem_Output(500, Gx, Gy, Gz) 
out.open("pwr900") 
 
out.write_db(db) 
 
##---------------------------------------------------------------------------
## 
## READ GIP FOR FORMALITY 
 
gip = GIP(44) 
reader.read_gip(gip) 
del gip 
 
##---------------------------------------------------------------------------
## 
## MATERIAL SETUP 
##---------------------------------------------------------------------------
## 
## Material map: 
## 1-45   --> Low Enrichment 
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## 46-90  --> Med Enrichment 
## 47-135 --> High Enrichment 
 
# read AMPX files 
low  = AMPX() 
med  = AMPX() 
high = AMPX() 
 
low.read_AMPX("fulllib/hmogmacrolib_low_44.bin") 
med.read_AMPX("fulllib/hmogmacrolib_mid_44.bin") 
high.read_AMPX("fulllib/hmogmacrolib_high_44.bin") 
 
# set number of materials 
mat.set_num(136) 
 
# set material 0 to zero 
mat.assign_zero(0) 
 
# assign AMPX materials 
for m in xrange(1, 46): 
    mat.assign_ampx(m, m - 1, low, 1) 
    mat.assign_ampx(m + 45, m - 1, med, 1) 
    mat.assign_ampx(m + 90, m - 1, high, 1) 
 
## write cross sections 
out.write_xs(mat) 
 
block = Upscatter_Matrix(mat) 
 
print "Number of Upscatter Groups = %i " % (block.num_groups()) 
 
# material ids 
matids = Vec_Int(out.chunk()) 
out.start_field_loop() 
while not out.finished_field_loop(): 
    k = out.current_chunk() 
    if k < Nz: 
        reader.read_chunk_matids(matids) 
    out.write_matids(matids) 
    out.advance_loop() 
 
reader.close() 
 
##---------------------------------------------------------------------------
## 
## SOURCE SETUP 
##---------------------------------------------------------------------------
## 
 
# allocate problem state (use a zero source) 
shapes = Vec_Dbl() 
out.write_src_info(ZERO_SOURCE, 0, shapes) 
 
out.close() 
 
##---------------------------------------------------------------------------
## 
## TIMING 
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##---------------------------------------------------------------------------
## 
 
timer.stop() 
time = timer.wall_clock() 
 
keys = timer_keys() 
if len(keys) > 0 and node() == 0: 
    print "\n" 
    print "TIMING : Problem ran in %16.6e seconds." % (time) 
    print "-------------------------------------------------" 
    for key in keys: 
        print "%30s : %16.6e" % (key, timer_value(key) / time) 
    print "-------------------------------------------------" 
 
##---------------------------------------------------------------------------
## 
 
manager.close() 
finalize() 
 
#############################################################################
## 
## end of setup.py 
#############################################################################
## 
This script used the pykba Denovo-python front-end script that automatically loads the Denovo bindings 

into Python. It is run using 
> pykba setup_ms.py 
The files  
hmogmacrolib_low_44.bin 
hmogmacrolib_low_44.bin 
hmogmacrolib_low_44.bin 
and 
edf_578x700.dnv 
are the cross sections and mesh/material input generated by MAVRIC, respectively. 

Denovo’s HPC front-end executable, hpckba, requires two sets of inputs: the binary input files 
described above and a text input file that allows the setting of certain runtime parameters and I/O 

instructions. The basic input file for all of the GPRA-PMM runs had the following format: 

pwr900.in: 
eq_set: sc 
hpc_input: pwr900 
num_blocks_i: 102 
num_blocks_j: 100 
num_z_blocks: 10 
num_sets: 11 
Pn_order: 0 
silo_off: 1 
With these files in place, the executable is run as follows: 
> aprun –n 112200 ./hpckba –I pwr900.in 
Other than changing parallel decompositions and solver options that have been documented in Section 

3.4.9, this process was used to run all of the GPRA-PMM problems. 
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E.2 COMPILATION 

Denovo uses a standard autoconf/make system for compiling/installing. On Jaguar the following 

modules were loaded at compile time: 
Currently Loaded Modulefiles: 
  1) modules/3.1.6 
  2) DefApps 
  3) torque/2.4.1b1-snap.200905191614 
  4) moab/5.3.6 
  5) /opt/cray/xt-asyncpe/default/modulefiles/xtpe-istanbul 
  6) cray/MySQL/5.0.64-1.0000.2342.16.1 
  7) xtpe-target-cnl 
  8) xt-service/2.2.41A 
  9) xt-os/2.2.41A 
 10) xt-boot/2.2.41A 
 11) xt-lustre-ss/2.2.41_1.6.5 
 12) cray/job/1.5.5-0.1_2.0202.18632.46.1 
 13) cray/csa/3.0.0-1_2.0202.18623.63.1 
 14) cray/account/1.0.0-2.0202.18612.42.3 
 15) cray/projdb/1.0.0-1.0202.18638.45.1 
 16) Base-opts/2.2.41A 
 17) pgi/10.3.0 
 18) xt-libsci/10.4.4 
 19) pmi/1.0-1.0000.7628.10.2.ss 
 20) xt-mpt/4.0.0 
 21) xt-pe/2.2.41A 
 22) xt-asyncpe/3.7 
 23) PrgEnv-pgi/2.2.41A 
Denovo used the PGI compiler (10.3.0) through Jaguar’s CC, cc, and ftn compiler scripts. The build script 

was as follows: 
build_Denovo: 
#!/bin/sh 
 
target='denovo-20100728' 
 
VENDORS=/ccs/proj/nfi004/vendors 
GSL=$VENDORS/gsl 
TRILINOS=$VENDORS/trilinos 
HDF5=$VENDORS/hdf5 
SILO=$VENDORS/silo 
SPRNG=$VENDORS/sprng 
PAPI=/opt/xt-tools/papi/3.7.2/v23 
LAPACK=/opt/xt-libsci/10.4.2/pgi 
 
cd /ccs/proj/nfi004/denovo/$target/build 
/ccs/proj/nfi004/denovo/$target/denovo/configure --
prefix=/ccs/proj/nfi004/denovo/$target –with-lapack="-lsci_istanbul" -
-with-lapack-lib=$LAPACK/lib --with-gsl-dir=$GSL --with-trilinos-
dir=$TRILINOS --with-mpi=mpich --with-mpi-dir=$MPICH_DIR --with-hdf5-
dir=$HDF5 --with-silo-dir=$SILO --with-cxx=pgi --with-comm=mpi --with-
opt=3 --with-dbc=0 --enable-krp-papi --with-papi-dir=$PAPI --enable-mc 



 

E-36 

--with-sprng-dir=$SPRNG --disable-strict-ansi --with-cxxflags=--
diag_suppress=1396  
make nj=12 CXX=CC CC=cc F90=ftn 
We used versions of GSL, Trilinos, HDF5/SILO, and SPRNG that we built and maintained. The verions 

were: 
 GSL-1.9 

 HDF5-1.8.2 

 SILO-4.7 
 Trilinos-10.2.0 
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E.3 BATCH SCRIPT 

The basic runtime script for our runs was: 

run_pwr900: 
#!/bin/bash 
 
#PBS -A csc053den 
#PBS -l size=112200 
#PBS -l walltime=1:00:00 
#PBS -o pwr900.out 
#PBS -e pwr900.error 
#PBS -N pwr900 
#PBS -m a 
#PBS -m b 
#PBS -m e 
#PBS -M evanstm@ornl.gov 
 
cd $PBS_O_WORKDIR 
export MPICH_PTL_MATCH_OFF=1 
date 
time aprun -n 112200 ./hpckba -i pwr900.in 
This script was queued using 
> qsub run_pwr900 
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E.4 RUNTIME ENVIRONMENT 

 
The runtime environment was listed in Section E.2. For completeness, it is repeated here: 

Currently Loaded Modulefiles: 
  1) modules/3.1.6 
  2) DefApps 
  3) torque/2.4.1b1-snap.200905191614 
  4) moab/5.3.6 
  5) /opt/cray/xt-asyncpe/default/modulefiles/xtpe-istanbul 
  6) cray/MySQL/5.0.64-1.0000.2342.16.1 
  7) xtpe-target-cnl 
  8) xt-service/2.2.41A 
  9) xt-os/2.2.41A 
 10) xt-boot/2.2.41A 
 11) xt-lustre-ss/2.2.41_1.6.5 
 12) cray/job/1.5.5-0.1_2.0202.18632.46.1 
 13) cray/csa/3.0.0-1_2.0202.18623.63.1 
 14) cray/account/1.0.0-2.0202.18612.42.3 
 15) cray/projdb/1.0.0-1.0202.18638.45.1 
 16) Base-opts/2.2.41A 
 17) pgi/10.3.0 
 18) xt-libsci/10.4.4 
 19) pmi/1.0-1.0000.7628.10.2.ss 
 20) xt-mpt/4.0.0 
 21) xt-pe/2.2.41A 
 22) xt-asyncpe/3.7 
 23) PrgEnv-pgi/2.2.41A 

 


